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ABSTRACT
Ordering guarantees are often defined using abstract exe-
cution models [2, 8–11, 19, 22]. Unfortunately, these
models are complex and make different assumptions
about system semantics. As a result, researchers find
it impossible to compare the ordering guarantees of co-
herence, consistency and isolation. This paper presents
a simple, unified model for defining ordering guaran-
tees that is sufficiently general to model a wide range of
systems, including processor memory, distributed stor-
age, and databases. We define a new single constraint
relationship, result visibility, which formalizes the “ap-
pears to execute before” relationship between operations.
Using only result visibility, we define more than 20 order-
ing guarantees from different research areas, including
PRAM [17], snapshot isolation [6] and eventual consis-
tency session guarantees [21]. To our knowledge, these
definitions form the broadest survey of ordering guaran-
tees using a single constraint in the current literature.

ACM Reference Format:
Adriana Szekeres and Irene Zhang. 2018. Making Consistency
More Consistent: A Unified Model for Coherence, Consistency
and Isolation. In PaPoC’18: 5th Workshop on Principles and
Practice of Consistency for Distributed Data , April 23–26,
2018, Porto, Portugal. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3194261.3194268

1 OVERVIEW
Ordering guarantees, such as those of coherence, consis-
tency and isolation, help programmers reason about the
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behavior of complex systems. Researchers commonly
define ordering guarantees using abstract execution mod-
els [2, 8, 9, 11, 19, 22]. These models explain the system
behavior, i.e., why a system produces a certain output
for a given input. To meet an ordering guarantee, a sys-
tem must allow only outputs producible by at least one
allowable execution for all inputs.

Unfortunately, abstract execution models can be com-
plex and often make limiting assumptions about a sys-
tem’s semantics (e.g., the system only supports reads and
writes). Thus, it becomes difficult for programmers to
understand and impossible for them to translate these
abstract models across different types of systems. For
example, Adya’s model [2] uses dependencies and anti-
dependencies between reads and writes; this requires
programmers to reason about complex dependencies be-
tween operations and works only for systems limited
to read and write operations. In contrast, Burckhardt’s
model [9] uses visibility and arbitration relationships
with more complex operations (e.g., increment), which
are difficult to translate to Adya’s dependencies. As a
result, it is hard to compare isolation guarantees defined
in Adya’s model with consistency guarantees in Burck-
hardt’s model. These semantic differences complicate ef-
forts by researchers from different communities to share
or compare ordering guarantees. Worse still, each com-
munity has developed a different vocabulary to discuss
different ordering guarantees.

This paper presents a simple, unified model for defin-
ing ordering guarantees. Our model uses a single opera-
tion relationship, result visibility, which formalizes the
“appears to execute before” relationships used to define
many guarantees. We demonstrate that result visibility
is both general and expressive by defining more than 20
existing coherence, consistency and isolation ordering
guarantees. This paper makes three contributions:

(1) A new state-machine-based abstract execution model
that considers execution ordering and state. It makes
no assumptions about operation semantics, so it
is sufficiently general to model a wide range of
systems, including processor memory, distributed
storage and relational databases.
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(2) A new operation relationship, result visibility, which
defines an invariant across all executions that pro-
duce a single result for a given program.

(3) A new set of definitions for a range of coherence,
consistency and isolation guarantees, where each
definition is simply a set of result visibility invari-
ants. To our knowledge, these definitions form the
broadest survey of ordering guarantees using a sin-
gle constraint in the current literature.

2 ABSTRACT MODEL
Ordering guarantees commonly define limits on system
behavior using abstract execution models. These models
“explain” the behavior of complex systems, so program-
mers can reason about a system’s ordering guarantees
without understanding its inner workings. Choosing an
execution model requires meeting two competing de-
mands: the model must be abstract enough to cover a
wide range of systems, while also concrete and simple
enough for programmers to understand. Existing exe-
cution models do not meet our requirements because
they are either limited to a specific system type (e.g.,
processor memory) or they are too complex (e.g., they
introduce a large number of complicated relationships
between executed operations).

To avoid these limitations, we introduce a general-
purpose, state machine-based model, where we represent
systems as a set of one or state machines. We then as-
sume that each operation executes on a subset of these
state machines at any point in time. Operations have no
relationship with each other except for executing on the
same state machine, which provides a single, simple re-
lationship for programmers to understand. We make no
assumptions about how many state machines a given sys-
tem contains or when operations execute on each state
machine, allowing us to model a wide range of systems;
for example, an 8-core multi-processor becomes 8 con-
currently executing state machines, while a distributed
storage system with 3 replicas as 3 state machines.

2.1 Abstract System Model
Like previous models, we assume the system holds a set
of named data objects to which it applies operations. The
system accepts sequences of atomic operations as input,
executes those operations on the objects, and produces
output sequences with a return value for each operation.
However, we make no assumptions about the types of
operations or data objects. We assume only that each
operation is atomic, accesses or modifies (or both) one
or more data objects, and returns a value as a result.

We refer to system input sequences as programs and a
complete input as a program set:

DEFINITION 1 (PROGRAM). An ordered sequence of
atomic operations on one or more data objects.

DEFINITION 2 (PROGRAM SET). An unordered set
of programs submitted as input to the system.

Programs first impose a partial order on the operations
in a program set. We call this relationship program order
and annotate it as ≺p. The system then outputs one return
value per operation in each program. These values are
collected into a result, and the output for a full program
set is its result set.

DEFINITION 3 (RESULT). An ordered set of return
values produced by the execution of an input program P,
corresponding to the operations of P and their order in
P.

DEFINITION 4 (RESULT SET). An unordered set of
results produced by the execution of a given program set.

In general, our abstract system model resembles those
previously defined [1, 9, 11]. However, we do not assume
any operation semantics (e.g., reads or writes) unless it
is necessary in order to define an ordering guarantee.

2.2 State Machine Abstract Execution
Model

Our execution model takes a state-machine-based ap-
proach, where state is represented as a sequence of exe-
cuted operations. Like past models [8, 9, 11], we assume
that the system executes operations in some total sequen-
tial order to form its execution history. Thus, we can
define an executes-before relationship between opera-
tions:

DEFINITION 5 (EXECUTES-BEFORE). Given a total
execution order e of a program set P and two operations
α,β ∈ P, α executes-before (≺e) β iff α precedes β in
the sequential order imposed by e.

Unlike previous models, we assume the system con-
sists of one or more state machines executing in parallel,
where each state machine has a complete copy of the
system’s data objects but does not execute all operations
in the execution history. Instead, at any point in time,
we assume that each state machine has executed a subse-
quence of the system’s execution history. Thus, we define
the execution state of an operation as follows:

DEFINITION 6 (EXECUTION STATE). Given a total
execution order e of a program set P, the execution state
of operation α , σα , contains some sequence of operations
β in execution order, where β ≺e α .

We annotate execution states as subscripts on the exe-
cuting operation. For example, consider a program with
two writes and a read: w1x,0w2x,1rx. We denote the
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execution of the read operation as rx,1w1x,0w2x,1, which
indicates that rx returned 1 and had an execution state
consisting of the two preceding writes. Together, the exe-
cution ordering, return values, and state for all program
set operations form our version of an execution history:

DEFINITION 7 (EXECUTION). A total sequential or-
dering of operations from the program set input. Each
executing operation has a corresponding execution state,
which determines the return value of the operation.

For an execution to be valid, each operation state must
include, at a minimum, the preceding operations whose
semantics dictated the return value of the corresponding
operation. However, we put no constraints on the opera-
tion semantics, so they are completely defined by the sys-
tem. For example, in our previous program, rx,1w1x,0w2x,1
and rx,0w1x,0 are valid executions while rx,1w1x,0 is not
because the semantics of read and write operations imply
that the read should reflect the latest write in the opera-
tion’s execution state.

Using execution state lets us easily model operations
that execute in parallel or on different replicas. Those
are simply operations in the execution history that do not
appear in each other’s execution state. For example, take
the following set of possible executions for our previous
example program:

e1 : w1x,0 ≺e w2x,1w1x,0 ≺e rx,1w1x,0w2x,1

e2 : w1x,0 ≺e w2x,1 ≺e rx,0w1x,0

e3 : w1x,0 ≺e w2x,1 ≺e rx,1w1x,0w2x,1

Based on execution state, all operations in execution e1
executed sequentially on the same state; however, in exe-
cution e2, the read operation either executed in parallel
with or on a different replica from the second write op-
eration. In both cases, the execution clearly explains the
returned results.

Our new execution model also effectively captures
potential asynchronous and non-deterministic behavior.
For example, the two writes in execution e3 executed
in parallel or on different replicas. However, we know
there was some coordination or synchronization before
the read because it executed on state that contains both
write operations.

2.3 New Properties and Equivalence
Finally, we define relationships between executions thrat
we later use to define result visibility. In our new model,
the executes-before relationship, defined above as ≺e, is
not meaningful without execution state. For example, in
execution e4 bellow, rx ≺e w2x,1 while in execution e2,
w2x,1 ≺e rx; however, e4 returns the same result as e2.

e4 : w1x,0 ≺e rx,0w1x,0 ≺e w2x,1

Therefore, we define a new strictly-executes-before rela-
tionship between two operations that captures ordering
and state:

DEFINITION 8 (STRICTLY-EXECUTES-BEFORE). Given
an execution e of a program P and two operations α,β ∈
P, α strictly-executes-before (≺σ ) β iff α ≺e β and
α ∈ σβ .

The strictly-executes-before relationship guarantees
that α executes sequentially before β and that α and β

execute on shared state (i.e., they execute in sequence on
the same state machine).

Note that different executions can lead to the same
result set. We use the notation e{ R to mean that exe-
cution e produced result set R. For example, executions
e1 and e3 from the previous example return the same
result set. Without knowledge of system internals, pro-
grammers cannot distinguish between these executions,
so we consider them to be equivalent:

DEFINITION 9 (EQUIVALENT EXECUTION). Given
an input program set P, and two executions, e1,e2 of P,
e1 and e2 are equivalent iff both executions return the
same result set R (i.e., both e1,e2 { R).

We then define the set of all equivalent executions for
a given program set that produce a particular result set as
the equivalent execution set:

DEFINITION 10 (EQUIVALENT EXECUTION SET).
Given an input program set P, the set EP of all valid exe-
cutions of P, and a result set R, the equivalent execution
set, EP{R, is {e ∈ EP | e{ R}.

The equivalent execution set is needed to define re-
sult visibility: given a P and R, our visibility constraint
provides an invariant over all executions in EP{R.

3 RESULT VISIBILITY
Result visibility defines a formal equivalent to “operation
A appears to run before B." That is, if a system guar-
antees result visibility, then the programmer knows that
it will produce only executions that appear to order the
operations one at a time on a single copy of system state.
Thus, we define result visibility as a single invariant on
all executions that produce a single result set:

DEFINITION 11 (RESULT VISIBILITY). Given a pro-
gram P, operation α is result visible to (◁) operation β

for result set R iff ∀e∈EP{R|α ⊀σ β :∃e′ ∈EP{R|α ≺σ

β and for all other pairs δ ,γ of result visible operations
for R (i.e., δ ◁ γ for R) δ ≺σ γ ∈ e =⇒ δ ≺σ γ ∈ e′.

Intuitively, result visibility guarantees that the system
produces the return value to β by executing it after α on
a simple system. For executions in EP{R where α ≺σ β ,
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we need not perform any checks because they already
executed α before β on the same state and met our in-
variant. For executions where α ⊀σ β , there must be an
equivalent execution where α ≺σ β that does not break
any of the other result visibility invariants.

With the result visibility invariant, programmers know
that they can reason about α and β as operations exe-
cuting in order on a simple state machine. For exam-
ple, if our simple program uses a system that guarantees
wx,1 ◁ rx, then we know that the system will always
return 1. Result visibility is an equivalent, but easier to
understand, relationship to allowable executions. In par-
ticular, for all result visibility constraints, results visibility
implies that there exists at least one execution that leads
to the result set where, if α ◁ β , then α ≺σ β . We state
the lemma formally and prove it in Appendix A:

LEMMA 1. Given a program set P and a set of result
visibility constraints V = {α,β ∈ P|α ◁ β for R}, a re-
sult set R satisfies V ⇐⇒ ∃e ∈ EP{R such that for every
pair α ◁ β ∈V : α ≺σ β in e.

Since result visibility is equivalent to ∃e|α ≺σ β , and
α ≺σ β represents “executes sequentially on a single
copy of system state,” we can consider result visibility a
formalization of “α appears to execute before β on a sim-
ple state machine.” The result visibility invariant works
as expected. In our previous program – w1x,0w2x,1rx
– we could require w1 ◁ w2. However, this single con-
straint is not sufficient to impose a useful ordering on w1
and w2 since, without an intervening read, the two writes
could execute in any order. Thus, to enforce program
order, we need to add relationships between the writes
and the read: w1 ◁ r and w2 ◁ r. These two constraints
are sufficient to ensure that rx always returns 1. However,
these three constraints do not unduly limit the execution;
for example, the following executions are all allowable:

e1 : w1x,0 ≺e w2x,1w1x,0 ≺e rx,1w1x,0w2x,1

e2 : w1x,0 ≺e w2x,1 ≺e rx,1w1x,0w2x,1

e3 : w2x,1 ≺e w1x,0 ≺e rx,1w2x,1

Even with these three constraints, note that result visibil-
ity still allows executions where w1 ⊀e w2 and w1 ⊀σ w2:
from the programmer’s perspective, these executions still
“appear” (i.e., are equivalent) to an execution where w1
executed before w2 on a simple state machine.

4 UNIFIED ORDERING GUARANTEES
Ordering guarantees dictate the result sets that a system
returns for a given program. Coherence typically refers
to ordering guarantees on single data objects, while con-
sistency covers multi-object guarantees. In contrast, iso-
lation assumes operations are grouped into transactions
and restricts how operations from concurrently executing

transactions can interleave. Table 1 uses result visibility
to define a range of coherence, consistency and isola-
tion ordering guarantees. We formally define the stricter
ordering guarantees in each category below.

4.1 Sequential consistency
Sequential consistency simplifies a complex systems by
having it appear to execute operations one at a time on a
single copy of system state:

DEFINITION 12 (SEQUENTIAL CONSISTENCY). A
system provides sequential consistency if, for any given
program set, P, it produces only result sets R where:
(SC1) for every two operations where α ≺p β , α ◁ β ,
and (SC2) for every two operations α,β in different pro-
grams, either α ◁ β or β ◁ α .

Appendix B.1 proves that sequential consistency limits
systems to result sets that lead from sequentially consis-
tent executions, making it consistent with existing defini-
tions [16].

4.2 Serializability
To use our execution model for isolation, we consider
each program in the program set to be a separate trans-
action. For isolation guarantees, we refer to programs
and program sets as transactions and transaction sets,
respectively. Because isolation guarantees apply to all
operations in a transaction, we define a new set visibility
property for simplicity:

DEFINITION 13 (SET VISIBILITY). Given two sets S1
and S2, S1 is set visible to S2 iff ∀α ∈ S1,∀β ∈ S2|α ◁ β .

We also allow set visibility between a set and a single
operation and vice versa. Serializability [7] resembles a
sequential consistency guarantee. However, instead of a
sequential ordering of operations, serializability requires
a sequential ordering of transactions. That is, transaction
appear as if they ran one at a time on a single copy of sys-
tem state. Program ordering is always maintained within
operations in a transaction, but there are no additional
ordering guarantees across transactions (e.g., all read-
only transactions could be ordered first and not return
any writes). For this reason, some researchers consider
serializability to be weaker than sequential consistency.

DEFINITION 14 (SERIALIZABILITY). A database
system provides serializability if for any given transac-
tion set T , it produces only result sets R where, for every
two committed transactions t1, t2 ∈ TC, either t1 ◁ t2 or
t2 ◁ t1.
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Table 1: Ordering guarantees. We use result visibility to define a range of coherence and consistency models. Checkmarks indicate constraints that are enforced in the model.
We assume that programs, sessions and transactions are equivalent. Note that, because result visibility is an invariant, the constraints are additive and there is no need to mention
executions. As a result, we can compactly represent a wide range of ordering guarantees using only result visibility to construct the columns of this table.

Coherence (same object) Consistency (different objects) Session Guarantees Isolation (transactional) Real-time

Program ordering
αx ≺p βx
=⇒

αx ◁ βx

Write Atomicity
w1x ≺ w2x ◁ γ

=⇒
w1x ◁ γ

Program ordering
αx ≺p βy
=⇒

αx ◁ βy

Write Atomicity
w1x ≺ w2y ◁ γ

=⇒
w1x ◁ γ

Monotonic Views
w ◁ r1 ≺p r2

=⇒
w ◁ r2

Dependent Writes
w1 ◁ r ≺p w2 ◁ γ

=⇒
w1 ◁ γ

Dependency cycle-free
α ∈ t1 ◁ β ∈ t2

=⇒
St1 ◁ St2

Consistent Reads
w ∈ t1 ◁ r ∈ t2

=⇒
WSt1 ◁ RSt2

Repeatable Reads

w ∈ t1 ◁ r ∈ t2
=⇒

w ◁ RSt2

Non-inter. Reads
w1 ≺p w2 ∈ t1

w1 ◁ r ∈ t2
=⇒

w2 ◁ r ∈ t2

No Aborted Reads
WSt1 ◁ RSt2

t2 ∈ TC
=⇒

t1 ∈ TC

α ≺r β

=⇒
α ◁ β

w ≺ r w ≺ w r ≺ r r ≺ w ≺p ◁ w ≺ r w ≺ w r ≺ r r ≺ w ≺p ◁ WS ◁WS RS ◁WS WS ◁ RS

Strict Serializability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Serializability [7] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Snapshot Isolation [6] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓1 ✓ ✓ ✓ ✓
Parallel SI [20] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓1 ✓ ✓ ✓ ✓
Non-monotonic SI[4] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓1 ✓ ✓ ✓ ✓
Monotonic Atomic Views [5] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Repeatable Reads ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Read Committed [14] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Read Uncommitted [14] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Linearlizability [15] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sequential Consistency [16] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Total Store Order [1] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Partial Store Order [1] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Weak Ordering [12] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Processor Consistency [13] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PRAM [17] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Cache Consistency [13] ✓

Read-Your-Writes [21] ✓ ✓
Monotonic Reads [21] ✓ ✓ ✓
Monotonic Writes [21] ✓ ✓ ✓ ✓
Writes-Follow-Reads [21] ✓ ✓ ✓

1Only if WSt1 ∩WSt2 , /0.



We ensure that transactions appear to execute in a se-
rial order by requiring that either all of the operations
from one transaction are result visible to the other or vice
versa. In Adya’s model [2], this requirement would trans-
late to no cycles in the dependency graph. In Crooks’s
definitions [11], the requirement is equivalent to each
transaction having a complete parent. Appendix B.2
proves equivalence between our and Crooks’s definitions.

4.3 Real-time Guarantees
Some ordering guarantees have real-time requirements.
The most commonly used ones are linearizability [15]
and strict serializability. To define these guarantees, we
add real-time properties to our abstract execution model.

DEFINITION 15 (STRICTLY-RETURNS-BEFORE). Given
a program set P and two operations α,β ∈ P, we define
α strictly-returns-before (≺r) β iff the system produces
the return value to α before the programmer submits β .

The strictly-returns-before relationship is a partial or-
dering; if α ⊀r β and β ⊀r α , then the two operations
are considered to be externally concurrent (i.e., the pro-
grammer submits both operations at the same time). Ex-
ternal concurrency does not reflect internal concurrency
(i.e., the system executes both operations in parallel),
although it is impossible to have internal without exter-
nal concurrency. Given this new relationship, we define
linearizability as an additional constraint on sequential
consistency:

DEFINITION 16 (LINEARIZABILITY). A system pro-
vides linearizability if, for any given program set, P, it
produces only result sets R where: (L1) for every two
operations where α ≺r β , α ◁ β , and (L2) for every two
operations α ⊀r β and β ⊀r α , either α ◁ β or β ◁ α .

Strict serializability is a similar addition to serializabil-
ity:

DEFINITION 17 (STRICT SERIALIZABILITY). A sys-
tem provides strict serializability if, for any program set
P, it produces only result sets R where: (SS1) for every
two transactions t1, t2 ∈ P, if all operations α ∈ t1 and
β ∈ t2, α ≺r β , then α ◁ β ; otherwise: (SS2) for every
two transactions t1, t2 ∈ P, either ∀α ∈ t1,∀β ∈ t2|α ◁ β

or ∀α ∈ t1,∀β ∈ t2|β ◁ α

Although we included an additional real-time relation-
ship between operations, both linearizability and strict
serializability are easily expressed in our model. Fur-
ther, the real-time relationship is simply a pre-condition,
similar to program ordering or transactions; result vis-
ibility remains sufficient to constrain allowable execu-
tions. A similar technique could be used to add other
pre-condition relationships needed to define different

classes of ordering guarantees. For example, adding a
causality relationship between operations would let us
define causal ordering guarantees [3, 18].

5 SUMMARY
In this paper, we specified a new unified framework for
defining coherence, consistency and isolation guarantees.
Our framework includes a new abstract execution model,
an invariant on executions, and the ability to define or-
dering guarantees for processor memory to database sys-
tems. We demonstrate the power and expressiveness of
our framework by capturing definitions for more than 20
ordering guarantees, from PRAM [17] to snapshot isola-
tion [6]. To our best knowledge, the definitions collected
in Table 1 represent the broadest survey of ordering guar-
antees using a single constraint in the current literature.
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A VISIBILITY PROOF
We prove the following lemma: Given a program P, a
result set R, and a set of visibility constraints V , contain-
ing pairs of operations α,β ∈ P such that α ◁ β for R,
R satisfies V ⇐⇒ ∃e ∈ EP{R such that for every pair
α ◁ β ∈V : α ≺σ β in e.

PROOF. We prove both directions of the lemma in
turn.

=⇒ . We begin with the trivial case where, for all pairs
of operations α ◁ β ∈V , all executions e ∈ EP{R|α ≺σ

β . In this case, not just one execution, but all executions
satisfy the conclusion, and the lemma is trivially true.

Now assume that, for some pair α ◁ β ∈V , there ex-
ists an e1 ∈ EP{R|α ⊀σ β . Then, according to the visi-
bility definition, there must exist another execution e2 ∈
EP{R|α ≺σ β . If e2 does not satisfy the lemma yet (i.e.,
there is some other pair of operations γ ◁ δ ∈ V |γ ⊀σ

δ ∈ e2), then according to the visibility definition, there
exists another execution e3 ∈ EP{R|α ≺σ β ∧ γ ≺σ δ .
Now, it is easy to see that we can repeat the same process
for all pairs of operations with visibility relationships in
V until the lemma is satisfied.

⇐= . The inverse of our lemma is trivially true. Sup-
pose there exists an execution e1 ∈EP{R such that the set

S≺σ
contains all pairs of operations α,β ∈ P|α ≺σ β ∈ e.

Consider the set of visibility constraints V such that, if
the pair α,β ∈ S≺σ

, then α ◁ β . Since any executions
e2 ∈ EP{R|α ⊀σ β automatically has a matching e′2 in e,
then there exists at least one execution in EP{R to meet
the visibility condition for all pairs α ◁ β ∈V . □

B PROOFS OF EQUIVALENCE FOR
ORDERING GUARANTEE
DEFINITIONS

B.1 Sequential Consistency Proof
We prove that systems which provide sequential consis-
tency produce the same result sets as sequentially consis-
tent executions.

DEFINITION 18 (SEQUENTIALLY CONSISTENT EXE-
CUTION). Given a program set P, we define a sequentially-
consistent execution e as one where: (S1) for every two
operations α ≺ β ∈ p: α ≺ β ∈ e and (S2) for every two
operations where α ≺ β ∈ e: α ≺σ β .

THEOREM 2. The sequentially-consistent system can
produce, for any given program set, all and only results
producible by all possible sequentially-consistent execu-
tions of the program set.

PROOF. (SC1) and (SC2) form a set of visibility con-
straints. By Lemma 1 this means that there exists an exe-
cution e such that: (1) for every two operations α ≺po β :
α ≺σ β and (2) for every two operations α,β from dif-
ferent programs either α ≺σ β or β ≺σ α . Execution e
imposes a total order of the ≺σ relation that preserves
program order, and thus it is a sequentially-consistent
execution. □

B.2 Isolation Proofs
We prove that our definition for isolation are equivalent
to the definitions in Crooks [11].

THEOREM 3 (SERIALIZABILITY). DEPENDENCY-
CYCLE-FREE(WS ◁ WS, RS ◁ WS, WS ◁ RS) ≡ ∃e :
∀t ∈ TC : COMPLET Ee,tsp.

PROOF. The visibility constraints for serializability
require a sequential visibility order on committed trans-
actions. By Lemma 1 this means that there must exist
a valid execution e such that for every committed trans-
action t all its operations executed on a state machine
which executed, in the given execution order, all previous
operations from the previous transactions which precede
t in the sequential order. This execution is equivalent to
an execution in which for every committed transaction its
parent state is complete, which also imposes a sequential
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order of all transactions’ operations, i.e. every transac-
tions reads from a state which was obtained by executing
all preceeding transactions. □

THEOREM 4 (SNAPSHOT ISOLATION). DEPENDENCY-
CYCLE-FREE(WS ◁ WS, RS ◁ WS, WS ◁ RS*) ∧ CONSISTENT-
READS ≡ ∃e : ∀t ∈ TC : ∃s∈ Se.COMPLET Ee,ts∧NO−
CONFts.

PROOF. The visibility constraints for snapshot isola-
tion require a sequential order of all committed transac-
tions such that every transaction’s reads and writes appear
to have executed before the writes of all the subsequent
transactions. Additionally, if two transactions have write-
write conflicts, they are completely ordered with respect
to eachother, i.e., the writes of the earlier transaction in
the sequence must appear to have executed before the
reads of the later transaction. By Lemma 1 this means
that there must exist an execution e where transactions
actually executed as described above, i.e., with the corre-
sponding ≺σ relations. This execution is so far identical
to an execution where ∀t ∈ TC : PREREADet and where
write-write conflicting transactions are totally ordered.
The additional set of constraints,CONSIST ENT −READS,
limit the transactions to reading from a committed snap-
shot, i.e., if transaction t1 reads from another transaction
t2, thus forming a visibility constraint, all of the writes
of t1 must be visible to all the reads of t1. This limits our
execution e to an execution where for every transaction t
there is a state such that COMPLET Ee,ts, i.e. each trans-
action reads from a snapshot of committed transactions,
and no write-write conflicting transaction committed be-
fore t since that state, i.e. NO−CONFts.

□

THEOREM 5 (READ COMMITTED). DEPENDENCY-
CYCLE-FREE(WS ◁ WS, RS ◁ WS) ∧ NO-INTERMEDIATE-
READS ≡ ∃e : ∀t ∈ TC : PREREADet.

PROOF. The visibility constraints for read commit-
ted require a sequential order of all committed transac-
tions such that every transaction’s reads and writes ap-
pear to have executed before the writes of all the sub-
sequent transactions. Additionally, if a visibility con-
straint exists from a write in a transaction t1 to a read
in a more recent transaction, then all the writes in t1
to that object must be visible to the read as well, i.e.
NO− INT ERMEDIAT E −READS. By Lemma 1 this
means that there must exist an execution e where transac-
tions actually executed as described above, i.e., with the
corresponding ≺σ relations. This execution is identical
to an execution where ∀t ∈ TC : PREREADet,i.e., where
for every operation in every transaction there must exist
a read state that precedes the transaction’s commit state –

by definition this read state does not contain intermediate
reads. □
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