
I’m Not Dead Yet! The Role of the
Operating System in a Kernel-Bypass Era

Irene Zhang
Microsoft Research

irene.zhang@microsoft.com

Jing Liu
University of Wisconsin - Madison

jingliu@cs.wisc.edu

Amanda Austin
University of Texas - Austin

ajaustin@cs.utexas.edu

Michael Lowell Roberts
Microsoft Research

miroberts@microsoft.com

Anirudh Badam
Microsoft Research

anirudh.badam@microsoft.com

Abstract
Researchers have long predicted the demise of the operating
system [21, 26, 41]. As datacenter servers increasingly incor-
porate I/O devices that let applications bypass the OS kernel
(e.g., RDMA [12] and DPDK [15] network devices or SPDK
storage devices), this prediction may finally come true. While
kernel-bypass devices do eliminate the OS kernel from the
I/O path, they do not handle the kernel’s most important job:
offering higher-level abstractions. This paper argues for a new
high-level, device-agnostic I/O abstraction for kernel-bypass
devices. We propose the Demikernel, a new library OS ar-
chitecture for kernel-bypass devices. It defines a high-level,
kernel-bypass I/O abstraction and provides user-space library
OSes to implement that abstraction across a range of kernel-
bypass devices. The Demikernel makes applications easier
to build, portable across devices, and unmodified as devices
continue to evolve.
CCS Concepts • Software and its engineering → Oper-
ating systems.
Keywords operating systems, datacenters, kernel bypass

ACM Reference Format:
Irene Zhang, Jing Liu, Amanda Austin, Michael Lowell Roberts,
and Anirudh Badam. 2019. I’m Not Dead Yet! The Role of the Op-
erating System in a Kernel-Bypass Era. In Workshop on Hot Topics
in Operating Systems (HotOS ’19), May 13–15, 2019, Bertinoro,
Italy. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3317550.3321422

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotOS ’19, May 13–15, 2019, Bertinoro, Italy
© 2019 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6727-1/19/05. . . $15.00
https://doi.org/10.1145/3317550.3321422

1 Introduction
Over the past decade, I/O devices in datacenter servers have
sped up while CPU performance has stagnated. To compen-
sate, servers increasingly integrate I/O accelerators – I/O
devices with attached computational units that offload work
from the CPU. Classic examples include TCP offloading[14,
46] and hardware virtualization (e.g., SR-IOV [23]); in the
future, compression, encryption, machine learning, and more
will be offloaded (e.g., using FPGAs [9, 42, 48] and other
hardware [8, 10, 43, 49]).

In contrast to classic I/O accelerators, modern datacenter
accelerators commonly offer kernel bypass along with their
other features, as the kernel adds significant overhead to ev-
ery I/O access [5, 31, 51]. These kernel-bypass accelerators
implement the needed OS features – multiplexing, isolation,
address translation – to let applications safely access I/O with-
out going through the kernel. While today’s kernel-bypass
accelerators have some limitations, eventually accelerators
will eliminate the OS kernel from the fast I/O path, relegating
the kernel to slow, control-path operations.

This datacenter trend raises an important question for oper-
ating system researchers: What role does the operating system
play in the upcoming kernel-bypass era? As shown in Fig-
ure 1, kernel-bypass accelerators remove the OS kernel from
the I/O data path but do not replace all of its functionality. Im-
portantly, they lack high-level, device-agnostic abstractions
offered by OS kernels, like files, sockets, and pipes.

Existing kernel-bypass applications [16, 22, 25, 35] es-
chew classic OS abstractions and directly interact with the
hardware. For example, the many distributed RDMA storage
systems [11, 16, 29, 30, 44, 60] are completely re-designed
to use the RDMA NIC interface and highly optimized to the
performance characteristics of specific hardware versions.

Unfortunately, customizing RDMA systems to the hard-
ware requires enormous engineering effort (and reaps few
benefits [28, 57]). The downside for hardware designers is
significant too: as more applications rely on accelerators, it be-
comes difficult for the hardware to evolve without impacting
an increasingly large number of applications.

https://doi.org/10.1145/3317550.3321422
https://doi.org/10.1145/3317550.3321422
https://doi.org/10.1145/3317550.3321422

Traditional Architecture Datacenter Server Architecture
I/O Device

OS Kernel

Control Path Data Path

Datacenter Application

CPU

Kernel-Bypass

I/O Device

OS Kernel

CPU

Application

Control & Data Path

Gap
?

Figure 1. Comparison of traditional server architecture and kernel-
bypass server architecture. Kernel-bypass accelerators let applica-
tions safely access I/O devices but do not replace the bypassed OS
functionality. Importantly, there is no longer a high-level, device-
agnostic I/O abstraction.

This paper argues for an evolution of the datacenter operat-
ing system to provide a high-level kernel-bypass I/O abstrac-
tion. Just because kernel-bypass accelerators eliminate the OS
kernel does not mean that application programmers must do
without the benefits of an OS. We discuss how kernel-bypass
devices have changed the datacenter and how operating sys-
tems should change as well. We propose a new OS architec-
ture, the Demikernel, and discuss design challenges for the
Demikernel and future datacenter OSes.

2 Kernel-Bypass Accelerators in the Datacenter

Today’s datacenter kernel-bypass accelerators comprise a con-
fusing combination of technologies, protocols, and specifica-
tions, implemented by a variety of I/O devices. There is no
unifying interface or set of features, other than reducing appli-
cation overhead by bypassing the OS kernel on the I/O path.
This section provides background on available devices and
their offered features, as well as insight into the difficulties
facing application programmers when using these devices.

Some kernel-bypass accelerators only implement kernel-
bypass, while others offer more, ranging from additional
OS functionality to arbitrary application-function offload. Ta-
ble 1 gives examples in each category. Intel’s Data-Plane De-
velopment Kit [15] (DPDK) or Storage-Plane Development
Kit [56] (SPDK) specify basic I/O device functionality for
kernel-bypass. Arrakis [51], Ix [5] and related work [27, 36]
use hardware virtualization to provide the same features;
for example, SR-IOV [23] provides multiplexing and the
IOMMU [2] provides address translation; however, these de-
vices provide no additional OS features. To use kernel-bypass
accelerators in this category, applications must supply their
own I/O stack (e.g., a complete user-level TCP stack).

RDMA NICs provide a limited networking stack and sup-
port the verbs interface, which offers reliable communica-
tion, and the rdmacm interface, which almost matches the
POSIX socket interface. However, to send and receive data,
applications must still supply OS buffer management and
flow control. Applications have to register memory before
using it for I/O, and receivers must allocate enough buffers of
the right size for senders. Allocating too many buffers wastes

Table 1. Examples of kernel-bypass accelerators. We categorize
acclerators based on their offered features. Some devices (left) only
offer kernel-bypass, some (middle) add a subset of OS features (e.g.,
RDMA provides a limited networking stack), and others (right) add
more complex features (e.g., compression, encryption, offloaded
application functions).

Kernel-bypass +OS features +other features

DPDK/SPDK RDMA FPGA NICs/SSD/NVMe

Arrakis/Ix ARM SoC NICs/SSDs/NVMe

memory while allocating too few causes communication to
fail.

Finally, there is a new category of programmable devices,
including I/O devices with FPGAs (e.g., Catapult [9], Mel-
lanox Innova [43], NetFPGA [48]) and I/O devices with ARM
Systems-on-a-chip (e.g., Broadcom NetXtreme [8], Mellanox
Bluefield [42]) that offer the potential to offload arbitrary
application functions. Compression, encryption and machine
learning have been proposed but almost anything is possible,
albeit not always practical.

Lacking any unified OS support for today’s kernel-bypass
accelerator technologies, application programmers must deeply
understand device features and OS internals to achieve kernel
bypass. They must implement missing OS functionality that
their application might need, and, worse, they must imple-
ment different OS functionality for each specific device and
update any changes as devices evolve.

3 Evolving the Datacenter OS for Kernel Bypass
The role of the operating system in a kernel-bypass framework
is simple: offer the benefits of the OS kernel with minimal
overhead. We detail the requirements to fulfill this role.

3.1 Optimize for User-Level I/O Processing

Kernel-bypass requires all OS functionality on the I/O path
be implemented in a user-level library. However, recycling
existing kernel-level I/O stacks into a user-level library is
both inefficient and insufficient to meet the needs of kernel-
bypass applications. For example, the traditional OS I/O stack
includes many mechanisms for sharing and multiplexing that
add needless overhead, especially when the library OS shares
the application’s address space.

Further, OS kernels lack mechanisms of value to kernel-
bypass applications. For example, kernel-bypass devices offer
user-space address translation but expect applications to help
wtih memory management by explicitly registering memory
with each device. Thus, a kernel-bypass OS can simplify
applications by transparently making all application memory
available to I/O devices. As an added benefit, this design lets
the OS make performance trade-offs without modifying every
application. For example, there is a trade-off between memory
usage and device registration because any registered memory

2

must be pinned and cannot be re-allocated or swapped. This
transparent memory registration is not available in existing OS
stacks. The combination of unnecessary and missing features
suggests the need for a completely re-designed user-level OS
I/O stack.

3.2 Offer an Efficient I/O-Processing Abstraction

Our current I/O abstraction is inherited from a time when I/O
devices were slow and applications spent much of their time
waiting for I/O to complete. In contrast, datacenter I/O devices
now deliver I/O requests faster than applications can process
them, so applications must be highly optimized to process
I/O as fast as possible. For example, Redis spends about 2µs
on each read request [51]; to keep up with increasing NIC
speeds, it no longer afford any added latency from the OS
kernel. For these applications, the kernel’s I/O abstraction is
as much a barrier to performance as the kernel itself.

While user-level libraries that preserve the POSIX API
(e.g., mTCP [25], F-stack[19]) are easy to use with existing
applications, the legacy I/O abstraction imposes too much
overhead. The POSIX abstraction requires applications copy
from kernel buffers into application buffers. This copy is both
inefficient (copying a 4k page takes 1µs on a 4Ghz CPU,
adding 50% overhead to Redis), and unnecessary (since the
data is already in the user-level address space). Second, UNIX
pipes force applications to operate on streams of data; how-
ever, applications like Redis operate on atomic units of data.
Redis can only process a read operation after the entire request
has arrived; by the time Redis has inspected a pipe and found
that its read operation is incomplete, it could have processed
a request that was ready. The incompatibility of the existing
POSIX interface with high-performance I/O processing calls
for a new abstraction.

3.3 Implement Differing OS Functionality

Library operating systems [17, 38] already offer an archi-
tectural solution for a kernel-bypass OS; however, existing
ones expect uniform OS kernel interfaces and hardware de-
vice features. For example, Arrakis [51] and Ix [5] only work
with I/O devices that support standard hardware virtualization
features, and even flexible library OS architectures, like the
Exokernel [17] and others [38], expect a uniform kernel and
device I/O abstraction that kernel-bypass devices do not offer.

A flexible library OS architecture is not only important
to hide differences between kernel-bypass devices from ap-
plications but gives hardware designers the ability to move
features between the hardware (the kernel-bypass acceler-
ator) and software (the library OS). There are trade-offs to
implementing functionality on the device (e.g., access to main
memory is slower than from the CPU), so there will always
be limitations to what OS features are practical and efficient
to implement on each device. A library OS offers an ideal
place to implement on the CPU those features that cannot be
implemented on the device. The need for varying amounts

LibOS

I/O Device

Kernel

Control Path Data Path

CPU

Kernel-Bypass

Demikernel Syscall Interface

Datacenter Application

Figure 2. The Demikernel architecture. The protected OS kernel
implements control-path operations that the application does not
access on every I/O (e.g., device set up, coarse-grained resource
management). Each libOS is customized to an kernel-bypass accel-
erator, which implements some OS functionality while the libOS
provides the rest.

of OS functionality is completely different from library OS
architectures of the past and argues for a new design.

4 The Demikernel
The Demikernel is a new OS architecture for kernel-bypass
accelerators. We describe it as a Demikernel because no sin-
gle component in I/O-accelerated datacenter servers imple-
ments all OS kernel functionality. This section presents the
Demikernel architecture and new kernel-bypass accelerator
abstraction.

4.1 Demikernel Architecture

As shown in Figure 2, the Demikernel architecture splits tra-
ditional OS functionality into a kernel, which handles control
path operations, and a library OS (libOS), which handles
data-path I/O operations. Every libOS implements the Demik-
ernel I/O abstraction across kernel-bypass accelerators and a
user-level runtime library.

The control path includes all OS functionality not used on
every I/O or used infrequently. This functionality includes al-
locating virtualized kernel-bypass accelerators to applications,
opening network connections, creating and opening files, etc.
The control path is not performance-critical, so we forsee that
it will continue to be provided by legacy OS kernels (e.g.,
Linux), especially because it requires complex functionality
that is not easily re-implemented.

The data path covers all OS functionality that handles I/O,
including reading and writing to storage devices, networking
devices and remote memory. Operations on other types of I/O
that may be available in the future (e.g., writing to disaggre-
gated memory) would also need to be included. The data path
is both performance-critical and CPU-intensive because it
must execute on every I/O operation. As a result, the Demik-
ernel architecture splits this functionality across libOSes and
kernel-bypass accelerators.

4.2 Demikernel I/O Queues

A key component of the Demikernel architecture is its device-
independent, high-level abstraction for kernel-bypass I/O.
The Demikernel abstracts kernel-bypass I/O devices as I/O
queues, which, unlike POSIX pipes, have an atomic data unit.

3

Applications push data for I/O as an atomic unit into the queue
and only pop data out of the queue when an entire data unit
has arrived and the application can process it to completion.

For performance, the Demikernel library OSes try to pre-
serve the application data unit on the device if possible.
Demikernel queues are not bound by hardware limitations
(e.g., limited capacity queues, fixed packet sizes) and are uni-
form between different devices. Since I/O devices commonly
use hardware queues to interact, we found that the queue
abstraction is general enough to apply to a wide range of
I/O accelerators. The queue abstraction also lets applications
express application-specific functions that can be offloaded
to the I/O device through queue filter and map functions.

4.3 Demikernel System Call Interface

Applications interact with Demikernel queues through the
Demikernel system call interface. System calls that give appli-
cation access to I/O devices, which would previously return
a file descriptor, now return a queue descriptor. To reduce
application changes, the Demikernel syscall interface leaves
most control-path calls in place while introducing a new set
of data-path calls. Figure 3 summarizes the system calls.

Control-path calls also include queue creation and modifi-
cation, e.g., filtering a network I/O queue for a packet type or
encrypting data in a storage I/O queue before writing to disk.
These calls are considered part of the control path; though a
queue filter executes on every I/O, the application calls the
OS only once to set up the filter.

The most important data path operations are push and pop
for sending and receiving data, respectively. These system
calls take a scatter-gather array of memory pointers, which
form an atomic queue element. A scatter-gather array pushed
into a Demikernel queue always pops out as a single element.
This feature provides two benefits: (1) it gives an kernel-
bypass accelerator information about the granularity at which
to compute (e.g., the encryption or compression unit), and
(2) it ensures that applications process requests only when
the entire queue element is available and can be processed to
completion.

Both push and pop are non-blocking. If either operation
cannot immediately complete, it returns a qtoken. Applica-
tions use the qtoken to fetch the completion when it is ready
via wait_* system calls. The wait call blocks on a sin-
gle queue token, wait_any provides functionality similar to
select or epoll, and wait_all blocks until all operations
complete. Section 4.4 discusses how applications process I/O
using the wait_* calls.

The merge system call (line 14, Figure 3) returns a new
queue that merges two queues. A pop from either queue
results in a pop from the merged queue and a push to the
merged queue results in a push to both queues.

The filter system call (line 15, Figure 3) returns a new
queue with only the filtered elements from the original queue.
A pop from the original queue results in a pop from the new

queue only if the filter function returns true; a push into the
new queue results in a push to the original queue only if the
filter function is met. We currently do not restrict filter func-
tions, but we forsee using a verified framework like Berkeley
Packet Filters [40] or Floem [52]. Library OSes always im-
plement filters directly on supported devices but default to
using the CPU if necessary. Filters are useful beyond reducing
CPU load: for example, they can improve cache utilization by
steering I/O to CPUs based on application-specific parameters
(e.g., keys in a key-value store) [32].

The sort system call returns a new queue with elements
reordered from the original one. A push to the original queue
automatically places the element in the sorted queue in prior-
ity order, causing a pop from the sorted queue to return the ele-
ment with the highest priority from the original queue. Sorted
queues are useful for implementing application-specific prior-
ity definitions, which the library OS strives to offload to the
I/O device when possible.

The map system call returns a queue that applies the map
function to every queue element. Applications can combine
queues to create complex I/O processing pipelines, which can
then be offloaded to an kernel-bypass accelerator. For exam-
ple, a series of filter and map queues could be implemented
on today’s programmable NICs using P4 [7] or Floem [52].

4.4 Event and Thread Scheduling

Demikernel does not prescribe a particular I/O handling model
(e.g., asynchronous, co-routines, polling); however, we en-
vision Demikernel libOSes being tightly integrated with ex-
isting scheduling libraries. To support this, the Demikernel
interface provides a low-level, improved epoll interface,
which we call wait_* (lines 5-7 in Figure 3), that works with
qtokens returned by non-blocking queue operations.

Because queues have granularity, each qtoken is unique to
a single queue operation. As a result, different application
threads can wait on different tokens, rather than all waiting
on the same file descriptor. This abstraction solves two major
issues with POSIX epoll: (1) wait directly returns the data
from the operation so the application can process the returned
data without making another system call, and (2) wait wakes
exactly one thread on each pop completion, so there are never
wasted wake ups for threads with no data to processes.

Applications can easily replace an application-level epoll
loop with a call to wait_any. In the future, we plan to im-
plement a libevent [39]-based Demikernel OS, which would
enable applications, like memcached [20], to achieve the ben-
efits of kernel-bypass transparently.

4.5 Memory Management

The Demikernel interface provides semi-transparent, zero-
copy I/O for applications in the form of transparent memory
registration and free-protection for in-use memory buffers.
Demikernel libOSes employ a memory manager, similar

4

1 / / c o n t r o l pa th ne twork c a l l s
2 int qd = socket(...)
3 int err = listen(int qd, ...);
4 int err = bind(int qd, ...)
5 int qd = accept(int qd, ...)
6 int err = connect(int qd, ...)
7 int err = close(int qd);
8 / / c o n t r o l pa th f i l e c a l l s
9 int qd = open(...);
10 int qd = creat(...);

1 / / c o n t r o l pa th queue c a l l s
2 int qd = queue();
3 int qd = merge(int qd1, int qd2);
4 int qd = filter(int qd, bool (*filter)(sgarray &sga));
5 int qd = sort(int qd1, bool (*sort)(sgarray &sga1, sgarray &sga1));
6 int qd = map(int qd1, void (*map)(sgarray &sga));
7 int status = qconnect(int qdin, int qdout);

1 / / da ta pa th queue c a l l s
2 qtoken qt = push(int qd, const sgarray &sga);
3 qtoken qt = pop(int qd, sgarray &sga);
4 ssize_t ret = wait(qtoken qt, sgarray &sga);
5 ssize_t ret = wait_any(qtoken *qts, size_t num_qts, qevent *qevs, size_t num_qevs, int timeout);
6 ssize_t ret = wait_all(qtoken *qts, size_t num_qts, qevent *qevs, size_t num_qevs, int timeout);
7 / / i d e n t i c a l t o a push , f o l l o w e d by a w a i t on t h e r e t u r n e d q t o k e n
8 ssize_t ret = blocking_push(int qd, sgarray &sga);
9 / / i d e n t i c a l t o a pop , f o l l o w e d by a w a i t on t h e r e t u r n e d q t o k e n

10 ssize_t ret = blocking_pop(int qd, sgarray &sga);

Figure 3. Demikernel System Call Interface. The control path interface is preserved from POSIX; however, network and storage system calls
now return and take queue descriptors (qd), which are ints similar to file descriptors. The ... represents unchanged arguments. We do not
include all control path calls; additional ones may be added for new device features (e.g., compression). The data path interface uses queue
operators in lieu of read and write operations. There are additional system calls that manipulate queues (e.g., filter, merge). Note that these calls
may be implemented by the libOS to run on the CPU or be offloaded to the kernel-bypass accelerator.

to existing memory allocation libraries (e.g., jemalloc [24],
Hoard [6]) but customized to support these features.

Kernel-bypass accelerators with IOMMUs typically require
memory registration to perform on-device address translation.
The Demikernel interface eliminates this registration from
applications; instead, Demikernel libOSes register memory
regions with kernel-bypass accelerators and then allocate
application memory from those regions.

Zero-copy I/O requires applications to coordinate shared
memory access with the I/O devices; that is, the application
cannot write or free any memory currently being accessed by
an I/O device. Similarly, when a device finishes processing an
I/O request, it needs to notify the application that it can modify
or free the buffer. Such coordination between device and
application must often be done across threads or components,
making it difficult for applications to accomplish on their
own.

To minimize this coordination, the Demikernel interface
provides free-protection for I/O memory buffers. Applica-
tions can free buffers while they are in use by a device, but
the libOS will not deallocate the buffer until the device com-
pletes its I/O. The Demikernel interface does not offer write-
protection for I/O buffers, which would be too expensive.
Thus, applications must still wait until their I/O completes
(i.e., push returns or wait on a qtoken completes) to modify
buffers as they do for traditional zero-copy I/O.

We believe this trade-off is reasonable for datacenter appli-
cations because they do not often perform in-place updates,
and it is easy to make changes where they do. For example,
Redis allocates a new value buffer for each put request and
changes the pointer in its data structures to the new buffer.

Our choice to integrate the memory manager in the libOS
with the kernel-bypass accelerator means that applications
cannot use an application-specific memory manager. How-
ever, we believe that the benefit of avoiding explicit mem-
ory registration and coordination outweighs the applications’
need for custom memory allocation. We envision application-
specific management can be addressed by adapting existing
memory allocators for the Demikernel as part of a new libOS.

5 Future Work
While the Demikernel specifies a new OS architecture, the
design of its library OSes leaves much room for future work.

5.1 Library OS Design

Each Demikernel library OSes supports a specific accelerator
type (e.g., RDMA, DPDK). To do so, it implements the OS
functionality missing from the specific device. For example,
while DPDK requires an entire networking stack, RDMA
requires a transport implementation atop the RDMA verbs
interface. Design decisions are specific to each device type as
well; for example, which networking stack to use for DPDK,
or whether to use one- or two-sided operations for RDMA
communication. Ideally, the library OSes should be built in a
modular fashion and share as much code as possible, but it
remains unclear how to do so when there are so many varied
kernel-bypass accelerators.

5.2 Network Protocols

Network I/O poses a challenge for library OSes. While some
accelerators work with all network protocols (e.g., DPDK can
support any networking stack), others require both ends of
the connection to support a particular protocol (e.g., RDMA

5

NICs require that both ends communicate via Infiniband or
RoCE [4]). Further, to support Demikernel queues, Demiker-
nel libOSes need a unit for breaking up I/O. The libOS could
insert the needed framing itself (e.g., atop a TCP stream);
however, the other end must be able to correctly parse the
framing and recreate the scatter-gather array. Alternatively,
the libOS could use framing available in an existing protocol
(e.g., HTTPS, REST), but this approach trades-off limit libOS
generality.

5.3 File Systems and Storage

A similar challenge for libraryOSes appears in efficient access
to storage. If Demikernel library OSes used a custom disk
layout for performance, any application would have to find a
compatible libOS to read stored data. Existing disk layouts
(e.g., ext4) may impose unnecessary overhead since each
Demikernel libOS supports only a single application, which
may not require an entire UNIX file system. Future work
could include design of an accelerator-specific storage layout.

6 Related Work

The Demikernel takes inspiration from the significant past re-
search into operating systems and kernel-bypass accelerators.
Operating Systems. The library operating system approach
has been used previously to improve performance while
maintaining flexibility. Previous library operating systems
[17, 38, 53] were customized to applications in order to pro-
vide high performance and flexibility. Recent work, such as
Arrakis [51] and IX [5], focus on providing low-latency ac-
cess to I/O devices; both split functionality between a control
plane and a data plane. Demikernel also splits functionality
in this way; however, it targets a range of kernel-bypass ac-
celerators, not hardware virtualization devices. Additionally,
Demikernel provides a new high-level kernel-bypass interface
that Ix and Arrakis do not.

User-level OS extensions [18, 61] let applications cus-
tomize parts of the OS for their needs. User-space file systems
and networking stacks have also been heavily researched.
Device drivers, whether in the OS kernel [13, 58] or at user
level [37], hide differences between hardware interfaces; how-
ever, they do not implement OS functionality. For example,
Mellanox and Intel provide DPDK device drivers for their
respective devices, but these drivers implement no OS func-
tionality, not even a networking stack.
I/O Accelerated Systems. Many user-level networking stacks
replace missing functionality in DPDK devices and maintain
the POSIX interface. We explored mTCP [25] but found
it to be too expensive; for example, its latency was higher
than the Linux kernel’s. Other options [3, 19, 50, 55] suffer
from similar inefficiencies imposed by the POSIX interface.
Netmap [54] and Stackmap [62] both offer user-level inter-
faces to NICs, but they are much lower level than the one
proposed in this paper.

ReFlex [35] and PASTE [22] provide fast remote access
to SSDs and NVMMEs, respectively, by optimizing process-
ing between the network and storage I/O. The Demikernel
provides a more general interface to make these applications
easier to build.

Past and recent efforts have explored moving functionality
between the CPU, NIC and network. Moving TCP is an old
idea [14, 46] that has become newly popular. Narayan, et
al. [47] make a case for leaving TCP on the CPU but mov-
ing congestion control off of the data path, while TAS [33]
proposes moving parts of the protocol to a dedicated CPU.
Mittal, et al. [45] explore moving reliable delivery from the
network into the NIC, although a CPU-based option would
also be possible. DPI [1] proposes an interface similar to the
Demikernel syscall interface but uses flows instead of queues
and considers network I/O but not storage.
I/O Accelerated Applications. Many applications have been
customized to leverage low-latency network access. Systems
such as FaRM [16], FASST [30], and more [11, 29, 34, 44,
59, 60] use RDMA for low-latency access to remote memory.
In contrast, the Demikernel targets applications that want the
benefits of kernel-bypass and are willing to sacrifice access to
hardware-specific features for portability and future-proofing.

7 Conclusion
Today’s widely-available kernel-bypass accelerators let appli-
cations bypass the operating systems stack on the I/O path.
Unfortunately, they do not replace the OS kernel’s function-
ality, leaving a crucial gap in the stack: no high-level I/O
abstraction. To fill this gap, we proposed the Demikernel,
a new OS architecture for kernel-bypass datacenter servers.
The Demikernel defines a new kernel-bypass I/O abstraction
and customizes library OSes, not applications, to specific
kernel-bypass accelerators. More research into the challenges
of designing these library OSes remains for future work.

Acknowledgments
We would like to thank all who provided valuable feedback
and help, including Dan Ports, Anna Kornfeld Simpson, Adri-
ana Szekeres, Amar Phanishayee, Adam Belay, Sandy Kaplan,
Natacha Crooks and the anonymous reviewers on the HotOS
PC.

References
[1] G. Alonso, C. Binnig, I. Pandis, K. Salem, J. Skrzypczak, R. Stutsman,

L. Thostrup, T. Wang, Z. Wang, and T. Ziegler. DPI: the data processing
interface for modern networks. In Proc. of CIDR, 2019.

[2] AMD. AMD I/O Virtualization Technology (IOMMU) Specifica-
tion, December 2016. https://support.amd.com/TechDocs/48882_
IOMMU.pdf.

[3] Ans(accelerated network stack) on dpdk, dpdk native tcp/ip stack. https:
//github.com/ansyun/dpdk-ans.

[4] I. T. Association. Infiniband architectural specification, Sept 2014.
https://www.infinibandta.org/ibta-specification/.

[5] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion. IX: a protected dataplane operating system for high

6

https://support.amd.com/TechDocs/48882_IOMMU.pdf
https://support.amd.com/TechDocs/48882_IOMMU.pdf
https://github.com/ansyun/dpdk-ans
https://github.com/ansyun/dpdk-ans
https://www.infinibandta.org/ibta-specification/

throughput and low latency. In Proc. of OSDI, 2014.
[6] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson. Hoard:

A scalable memory allocator for multithreaded applications. In ACM
SIGARCH Computer Architecture News, volume 28, pages 117–128.
ACM, 2000.

[7] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al. P4: Program-
ming protocol-independent packet processors. Proc. of SIGCOMM,
2014.

[8] Broadcom. High-performance datacenter SoC with integrated NetX-
treme ethernet controller. https://www.broadcom.com/products/
ethernet-connectivity/controllers/bcm58800.

[9] Project Catapult. https://www.microsoft.com/en-us/research/
project/project-catapult/.

[10] Cavium. LiquidIO 2 SmarNICs. https://www.cavium.com/
liquidio-II-server-adapters.html.

[11] H. Chen, R. Chen, X. Wei, J. Shi, Y. Chen, Z. Wang, B. Zang, and
H. Guan. Fast in-memory transaction processing using rdma and htm.
ACM Transactions on Computer Systems, 35(1):3, 2017.

[12] R. Consortium. A rdma protocol specification, October 2002. http:
//rdmaconsortium.org/.

[13] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers:
Where the Kernel Meets the Hardware. " O’Reilly Media, Inc.", 2005.

[14] A. Currid. Tcp offload to the rescue. ACM Queue, 2004.
[15] Data plane development kit. https://www.dpdk.org/.
[16] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson. Farm: Fast

remote memory. In Proc. of NSDI, pages 401–414, 2014.
[17] D. R. Engler, M. F. Kaashoek, et al. Exokernel: An operating system

architecture for application-level resource management. In Proc. of
SOSP, 1995.

[18] J. Evans. A scalable concurrent malloc (3) implementation for FreeBSD.
In Proc. of the BSDCan Conference, 2006.

[19] F-Stack. http://www.f-stack.org/.
[20] B. Fitzpatrick. Distributed caching with memcached. Linux Journal,

2004.
[21] H. Gilmore. The Cloud as a Tectonic Shift in IT: The

Death of Operating Systems (as We Know Them). Cloud-
bees, July 2012. https://www.cloudbees.com/blog/
cloud-tectonic-shift-it-death-operating-systems-we-know-them.

[22] M. Honda, G. Lettieri, L. Eggert, and D. Santry. PASTE: a network
programming interface for non-volatile main memory. In Proc. of NSDI,
2018.

[23] T. Hudek. Overview of single root i/o virtualization (sr-
iov). Technical report, Microsoft, April 2017. https:
//docs.microsoft.com/en-us/windows-hardware/drivers/
network/overview-of-single-root-i-o-virtualization--sr-iov-.

[24] http://jemalloc.net/.
[25] E. Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm, D. Han, and

K. Park. mTCP: a highly scalable user-level tcp stack for multicore
systems. In Proc. of NSDI, 2014.

[26] M. Kabay and G. Merrill. Is the operating system dead? Net-
workWorld, July 2011. https://www.networkworld.com/article/
2178825/wireless/is-the-operating-system-dead-.html.

[27] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and
C. Kozyrakis. Shinjuku: Preemptive scheduling for µsecond-scale tail
latency. In Proc. of NSDI, pages 345–360, 2019.

[28] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter RPCs can be
general and fast. In nsdi, 2019.

[29] A. Kalia, M. Kaminsky, and D. G. Andersen. Using rdma efficiently
for key-value services. ACM SIGCOMM Computer Communication
Review, 44(4):295–306, 2015.

[30] A. Kalia, M. Kaminsky, and D. G. Andersen. Fasst: Fast, scalable and
simple distributed transactions with two-sided (RDMA) datagram rpcs.
In Proc. of OSDI, 2016.

[31] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks. Profiling a warehouse-scale computer. In
ACM SIGARCH Computer Architecture News. ACM, 2015.

[32] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and A. Krishna-
murthy. High performance packet processing with flexnic. In Proc. of
ASPLOS, 2016.

[33] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, T. Anderson, and
A. Krishnamurthy. TAS: TCP acceleration as a service. In Proc. of
EuroSys, 2019.

[34] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H. Liu, J. Padhye,
S. Raindel, S. Swanson, V. Sekar, and S. Seshan. Hyperloop: group-
based nic-offloading to accelerate replicated transactions in multi-tenant
storage systems. In Proc. of SIGCOMM, pages 297–312. ACM, 2018.

[35] A. Klimovic, H. Litz, and C. Kozyrakis. Reflex: Remote flash ≈
local flash. In Proceedings of the Twenty-Second International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, pages 345–359, New York, NY,
USA, 2017. ACM.

[36] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson.
Strata: A cross media file system. In Proc. of SOSP, pages 460–477.
ACM, 2017.

[37] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Götz, C. Gray, L. Macpherson,
D. Potts, Y.-T. Shen, K. Elphinstone, and G. Heiser. User-level device
drivers: Achieved performance. Journal of Computer Science and
Technology, 20(5):654–664, 2005.

[38] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden. The design and implementation of an
operating system to support distributed multimedia applications. IEEE
Journal on Select Areas in Communications, 14(7):1280–1297, 9 1996.

[39] libevent: an event notification library. http://libevent.org/.
[40] S. McCanne and V. Jacobson. The BSD packet filter: A new architecture

for user-level packet capture. In USENIX winter, volume 46, 1993.
[41] S. McCarty. The operating system is dead. Long live

the operating system? InfoWorld, May 2018. https:
//www.infoworld.com/article/3269605/operating-systems/
the-operating-system-is-dead-long-live-the-operating-system.
html.

[42] Mellanox. BlueField Smart NIC. http://www.mellanox.com/page/
products_dyn?product_family=275&mtag=bluefield_smart_
nic1.

[43] Mellanox. Innova Flex Smart NIC. http://www.mellanox.com/page/
products_dyn?product_family=276&mtag=programmable_
adapter_cards_innova2flex.

[44] C. Mitchell, Y. Geng, and J. Li. Using one-sided rdma reads to build a
fast, cpu-efficient key-value store. In Proc. of USENIX ATC, 2013.

[45] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishnamurthy, S. Rat-
nasamy, and S. Shenker. Revisiting network support for rdma. In Proc.
of SIGCOMM, 2018.

[46] J. C. Mogul. Tcp offload is a dumb idea whose time has come. In Proc.
of HotNets, pages 25–30, 2003.

[47] A. Narayan, F. Cangialosi, P. Goyal, S. Narayana, M. Alizadeh, and
H. Balakrishnan. The case for moving congestion control out of the
datapath. In Proc. of HotNets. ACM, 2017.

[48] NetFPGA: A line-rate, flexible, and open platform for research, and
classroom experimentation. https://netfpga.org/site/#/.

[49] Netronome. Agilio CX SmartNICs. https://www.netronome.com/
products/agilio-cx/.

[50] Openonload. https://www.openonload.org/.
[51] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy,

T. Anderson, and T. Roscoe. Arrakis: The operating system is the
control plane. ACM Transactions on Computer Systems, 2016.

[52] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and
T. Anderson. Floem: a programming system for NIC-accelerated net-
work applications. In Proc. of OSDI, pages 663–679, 2018.

7

https://www.broadcom.com/products/ethernet-connectivity/controllers/bcm58800
https://www.broadcom.com/products/ethernet-connectivity/controllers/bcm58800
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.cavium.com/liquidio-II-server-adapters.html
https://www.cavium.com/liquidio-II-server-adapters.html
http://rdmaconsortium.org/
http://rdmaconsortium.org/
https://www.dpdk.org/
http://www.f-stack.org/
https://www.cloudbees.com/blog/cloud-tectonic-shift-it-death-operating-systems-we-know-them
https://www.cloudbees.com/blog/cloud-tectonic-shift-it-death-operating-systems-we-know-them
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-
http://jemalloc.net/
https://www.networkworld.com/article/2178825/wireless/is-the-operating-system-dead-.html
https://www.networkworld.com/article/2178825/wireless/is-the-operating-system-dead-.html
http://libevent.org/
https://www.infoworld.com/article/3269605/operating-systems/the-operating-system-is-dead-long-live-the-operating-system.html
https://www.infoworld.com/article/3269605/operating-systems/the-operating-system-is-dead-long-live-the-operating-system.html
https://www.infoworld.com/article/3269605/operating-systems/the-operating-system-is-dead-long-live-the-operating-system.html
https://www.infoworld.com/article/3269605/operating-systems/the-operating-system-is-dead-long-live-the-operating-system.html
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic1
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic1
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic1
http://www.mellanox.com/page/products_dyn?product_family=276&mtag=programmable_adapter_cards_innova2flex
http://www.mellanox.com/page/products_dyn?product_family=276&mtag=programmable_adapter_cards_innova2flex
http://www.mellanox.com/page/products_dyn?product_family=276&mtag=programmable_adapter_cards_innova2flex
https://netfpga.org/site/#/
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.openonload.org/

[53] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt.
Rethinking the library os from the top down. In Proceedings of the
Sixteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XVI, pages
291–304, New York, NY, USA, 2011. ACM.

[54] L. Rizzo. Netmap: a novel framework for fast packet i/o. In Proc. of
USENIX Security, pages 101–112, 2012.

[55] SolarFlare. https://www.solarflare.com/ultra-low-latency.
[56] Storage performance development kit. https://spdk.io/.
[57] M. Su, M. Zhang, K. Chen, Z. Guo, and Y. Wu. Rfp: When rpc is faster

than server-bypass with rdma. In Proceedings of the Twelfth European
Conference on Computer Systems, pages 1–15. ACM, 2017.

[58] M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers. Nooks: An
architecture for reliable device drivers. In Proc. of EuroSys, 2002.

[59] K. Taranov, G. Alonso, and T. Hoefler. Fast and strongly-consistent
per-item resilience in key-value stores. In Proceedings of the Thirteenth
EuroSys Conference, page 39. ACM, 2018.

[60] X. Wei, Z. Dong, R. Chen, and H. Chen. Deconstructing rdma-enabled
distributed transactions: Hybrid is better! In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), Carlsbad,
CA, 2018. USENIX Association.

[61] B. B. Welch and J. K. Ousterhout. Pseudo devices: User-level exten-
sions to the sprite file system. Technical report, UC Berkeley, 1988.

[62] K. Yasukata, M. Honda, D. Santry, and L. Eggert. Stackmap: Low-
latency networking with the os stack and dedicated nics. In Proc. of
USENIX ATC, pages 43–56, 2016.

8

https://www.solarflare.com/ultra-low-latency
https://spdk.io/

	Abstract
	1 Introduction
	2 Kernel-Bypass Accelerators in the Datacenter
	3 Evolving the Datacenter OS for Kernel Bypass
	3.1 Optimize for User-Level I/O Processing
	3.2 Offer an Efficient I/O-Processing Abstraction
	3.3 Implement Differing OS Functionality

	4 The Demikernel
	4.1 Demikernel Architecture
	4.2 Demikernel I/O Queues
	4.3 Demikernel System Call Interface
	4.4 Event and Thread Scheduling
	4.5 Memory Management

	5 Future Work
	5.1 Library OS Design
	5.2 Network Protocols
	5.3 File Systems and Storage

	6 Related Work
	7 Conclusion
	References

