
Building Consistent Transactions
with Inconsistent Replication

Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, 
Arvind Krishnamurthy, Dan R. K. Ports

University of Washington

Distributed storage systems provide crucial
guarantees for datacenter applications:

Scalability

Fault-tolerance

Durability

Distributed Storage Architecture

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition CStorage Partition A Storage Partition B Storage Partition CDistributed Storage System

Distributed Storage Architecture

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

Clients

Storage Partition A Storage Partition B Storage Partition CDistributed Storage System

Distributed Storage Architecture

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

Clients

Storage Partition A Storage Partition B Storage Partition C

Distributed Storage Architecture

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

Clients

Scalability

Storage Partition A Storage Partition B Storage Partition C

Distributed Storage Architecture

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

Clients

Scalability

Distributed Storage Architecture

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

Clients

Scalability

Fault-tolerance Fault-tolerance Fault-tolerance

Consistency guarantees are
important in a distributed system.
Guides programmer reasoning about:

• application state (i.e., what is a valid state,
what invariants can I assume)

• concurrency (i.e., what happens when two
writes happen at the same time)

• failures (i.e., what happens when the
system fails in the middle of an operation)

Some systems have weaker
consistency guarantees.

• Eventual consistency - eventual ordering of
operations and applications resolve conflicts

• No atomicity or concurrency control -
applications use versioning and explicit locking

• Examples: Dynamo, Cassandra, Voldemort

Some systems have strong
consistency guarantees.

• ACID distributed transactions - help
applications manage concurrency

• Strong consistency/linearizable isolation -
strict serial ordering of transactions

• Examples: Spanner, MegaStore

Distributed transactions are
expensive in a replicated system.

• Distributed transactions with strong
consistency require replication with
strong consistency.

• Replication with strong consistency
imposes a high overhead.

Lots of cross-replica coordination =  
higher latency + lower throughput

Distributed transactions are
expensive in a replicated system.

• Distributed transactions with strong
consistency require replication with
strong consistency.

• Replication with strong consistency
imposes a high overhead.

Programmers face a choice.

• Strong consistency guarantees are easier
to use but have limited performance.

• Weak consistency guarantees are harder
to use but have better performance.

Programmers face a choice.

• Strong consistency guarantees are easier
to use but have limited performance.

• Weak consistency guarantees are harder
to use but have better performance.

Programmers face a choice.

• Strong consistency guarantees are easier
to use but have limited performance.

• Weak consistency guarantees are harder
to use but have better performance.

Programmers face a choice.

• Strong consistency guarantees are easier
to use but have limited performance.

• Weak consistency guarantees are harder
to use but have better performance.

Our Goal

Make transactional storage cheaper
to use while maintaining  
strong guarantees.

Our Goal

Make transactional storage cheaper
to use while maintaining  
strong guarantees.

Improve latency and
throughput for r/w

transactions

Our Goal

Make transactional storage cheaper
to use while maintaining  
strong guarantees.

Improve latency and
throughput for r/w

transactions

Strong Consistency 
General Transaction Model

Our Approach

Provide distributed transactions with
strong consistency using a replication
protocol with no consistency.

Our Approach

Provide distributed transactions with
strong consistency using a replication
protocol with no consistency.

Our Approach

Provide distributed transactions with
strong consistency using a replication
protocol with no consistency.

Rest of this talk

1. The cost of strong consistency
2. TAPIR - the Transactional Application

Protocol for Inconsistent Replication
3. Evaluation
4. Summary

Why is consistency so expensive?
App 

server 
App 

server 

Storage Partition BStorage Partition A Storage Partition CStorage Partition A Storage Partition B Storage Partition CTransactional Storage System

txn txn

Why is consistency so expensive?
App 

server 
App 

server 

Storage Partition BStorage Partition A Storage Partition CStorage Partition A Storage Partition B Storage Partition CTransactional Storage System

txn txn

Why is consistency so expensive?
App 

server 
App 

server 

Storage Partition BStorage Partition A Storage Partition CStorage Partition A Storage Partition B Storage Partition CTransactional Storage System

txn
txn

Why is consistency so expensive?
App 

server 
App 

server 

Storage Partition BStorage Partition A Storage Partition CStorage Partition A Storage Partition B Storage Partition CTransactional Storage System

txn
txn

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

txntxntxn txntxn

Why is consistency so expensive?

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

txntxn txn
txntxn

Why is consistency so expensive?

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

txntxn txn
txntxn
txn
txn

txn
txn

txn txn
txn

txn
txn

txn

Cross-partition coordination
(Two-Phase Commit)

Why is consistency so expensive?

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

txntxn txn
txntxn

txn
txn

txn
txn

txn txn
txn

txn
txn

txn

Cross-partition coordination
(Two-Phase Commit)

Why is consistency so expensive?

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

txntxn txn
txntxn

txn
txn

txn
txn

txn txn
txn

txn
txn

txn

Cross-partition coordination
(Two-Phase Commit)

Cross-replica
coordination

(Paxos)

Cross-replica
coordination

(Paxos)

Cross-replica
coordination

(Paxos)

Why is consistency so expensive?

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

txntxn txn
txntxn

txn
txn

txn
txn

txn txn
txn

txn
txn

txn

Cross-partition coordination
(Two-Phase Commit)

Cross-replica
coordination

(Paxos)

Cross-replica
coordination

(Paxos)

Cross-replica
coordination

(Paxos)

Wasted work!

Why is consistency so expensive?

Existing transactional storage systems use
a transaction protocol and a replication
protocol that both enforce strong
consistency.

Why is consistency so expensive?

Rest of this talk

1. The cost of strong consistency
2. TAPIR - the Transactional Application

Protocol for Inconsistent Replication
3. Evaluation
4. Summary

TAPIR

Transactional Application Protocol
for Inconsistent Replication

TAPIR

The first transaction protocol to
provide distributed transactions with

strong consistency using a replication
protocol with no consistency.

Inconsistent Replication
A new replication protocol that:

• Provides fault-tolerance without
consistency

• Supports unordered record, instead of
ordered log

• Requires no cross-replica coordination

• Does not rely on synchronous disk writes

TAPIR
App 

server 
App 

server 

Storage Partition BStorage Partition A Storage Partition C

txntxntxn txntxntxntxntxntxntxntxn txntxntxntxn

TAPIR
App 

server 
App 

server 

Storage Partition BStorage Partition A Storage Partition C

txntxn txn
txntxn

txn txn txn txn txn txn
txn txn txn txn

TAPIR
App 

server 
App 

server 

Storage Partition BStorage Partition A Storage Partition C

Cross-transaction coordination
txntxn txn

txntxn

txn txn txn txn txn txn
txn txn txn txn

TAPIR
App 

server 
App 

server 

Storage Partition BStorage Partition A Storage Partition C

Cross-transaction coordination

Single  

round-trip!

txntxn txn
txntxn

txn txn txn txn txn txn
txn txn txn txn

TAPIR
App 

server 
App 

server 

Storage Partition BStorage Partition A Storage Partition C

Cross-transaction coordination

Single  

round-trip! No leader!

txntxn txn
txntxn

txn txn txn txn txn txn
txn txn txn txn

TAPIR
App 

server 
App 

server 

Storage Partition BStorage Partition A Storage Partition C

txntxntxn txntxntxntxntxntxn txntxntxntxntxntxn

TAPIR
App 

server 
App 

server 

Storage Partition BStorage Partition A Storage Partition C

txn

txn

txn

txn
txntxn

txn

txn txn

txn
txn

txn

txn txn
txn

TAPIR
App 

server 
App 

server 

Storage Partition BStorage Partition A Storage Partition C

txn

txn

txn

txn
txntxn

txn

txn txn

txn
txn

txn

Reordered 

transactions?

txn txn
txn

TAPIR
App 

server 
App 

server 

Storage Partition BStorage Partition A Storage Partition C

txn

txn

txn

txn
txntxn

txn

txn txn

txn
txn

txn

Reordered 

transactions? Missing 
transactions?

txn txn
txn

Handling Inconsistency
TAPIR uses several techniques to cope
with inconsistency across replicas:

• Loosely synchronized clocks for
transaction ordering.

• Optimistic concurrency control to
detect conflicts with a partial history.

• Multi-versioned storage for applying
updates out-of-order.

TAPIR Technique: Transaction ordering with
loosely synchronized clocks

• Clients pick transaction
timestamp using local
clock.

• Replicas validate
transaction at
timestamp, regardless of
when they receive the
transaction.

• Clock synchronization for
performance, not
correctness.

App 
server 

App 
server 

Storage Partition B

txn
txn

txn
txn txn

txn

TAPIR Technique: Transaction ordering with
loosely synchronized clocks

• Clients pick transaction
timestamp using local
clock.

• Replicas validate
transaction at
timestamp, regardless of
when they receive the
transaction.

• Clock synchronization for
performance, not
correctness.

App 
server 

App 
server 

Storage Partition B

txn txntxn txntxn txn

TAPIR Technique: Transaction ordering with
loosely synchronized clocks

• Clients pick transaction
timestamp using local
clock.

• Replicas validate
transaction at
timestamp, regardless of
when they receive the
transaction.

• Clock synchronization for
performance, not
correctness.

App 
server 

App 
server 

Storage Partition B

148txn 148txn 148txn 142txn 142txn 142txn

TAPIR Technique: Transaction ordering with
loosely synchronized clocks

• Clients pick transaction
timestamp using local
clock.

• Replicas validate
transaction at
timestamp, regardless of
when they receive the
transaction.

• Clock synchronization for
performance, not
correctness.

App 
server 

App 
server 

Storage Partition B

148txn

148txn

148txn142txn

142txn
142txn

TAPIR Technique: Transaction ordering with
loosely synchronized clocks

• Clients pick transaction
timestamp using local
clock.

• Replicas validate
transaction at
timestamp, regardless of
when they receive the
transaction.

• Clock synchronization for
performance, not
correctness.

App 
server 

App 
server 

Storage Partition B

148txn

148txn

148txn142txn

142txn
142txn

Handling Inconsistency
TAPIR uses several techniques to cope
with inconsistency across replicas:

• Loosely synchronized clocks for
optimistic transaction ordering at clients.

• Optimistic concurrency control to
detect conflicts with a partial history.

• Multi-versioned storage for applying
updates out-of-order.

• OCC checks just one
transaction at a time, so
a full transaction history
is not necessary.

• Every transaction
committed at a majority.

• Quorum intersection
ensures every
transaction is checked.

Storage Partition C

App 
server 

App 
server 

TAPIR Technique: Conflict detection with
optimistic concurrency control

148txn

148txn 142txn

142txn

• OCC checks just one
transaction at a time, so
a full transaction history
is not necessary.

• Every transaction
committed at a majority.

• Quorum intersection
ensures every
transaction is checked.

Storage Partition C

App 
server 

App 
server 

TAPIR Technique: Conflict detection with
optimistic concurrency control

148txn

148txn 142txn

142txn

• OCC checks just one
transaction at a time, so
a full transaction history
is not necessary.

• Every transaction
committed at a majority.

• Quorum intersection
ensures every
transaction is checked.

Storage Partition C

App 
server 

App 
server 

TAPIR Technique: Conflict detection with
optimistic concurrency control

148txn

148txn 142txn

142txn

Handling Inconsistency
TAPIR uses several techniques to cope
with inconsistency across replicas:

• Loosely synchronized clocks for
optimistic transaction ordering at clients.

• Optimistic concurrency control to
detect conflicts with a partial history.

• Multi-versioned storage for applying
updates out-of-order.

• Backing store versioned
using transaction
timestamp.

• Replicas periodically
synchronize to find
missed transactions.

• Backing store converges
to same state, regardless
of when the updates are
applied. Storage Partition C

App 
server 

App 
server 

TAPIR Technique: Out-of-order updates with
multi-versioned storage

142txn

148txn

148txn

148txn 142txn 142txn

• Backing store versioned
using transaction
timestamp.

• Replicas periodically
synchronize to find
missed transactions.

• Backing store converges
to same state, regardless
of when the updates are
applied. Storage Partition C

App 
server 

App 
server 

TAPIR Technique: Out-of-order updates with
multi-versioned storage

142txn

148txn

148txn
148txn
142txn

142txn

Rest of this talk

1. The cost of strong consistency
2. TAPIR - the Transactional Application

Protocol for Inconsistent Replication
3. Evaluation
4. Summary

Experimental Questions
Does TAPIR improve latency?

• In a single cluster?

• Across datacenters?
Does TAPIR improve throughput?

• For low contention workloads?

• For high contention workload?

Deployment
Cluster

• Servers connected via 12 switch fat-tree topology

• Average clock skew: ~6us

• Average RTT: ~150us
Wide-area

• Google Compute Engine VMs in Asia, Europe and US

• Average clock skew: ~2ms

• Average RTT: (Eu-A)~260 (Eu-US)~110 (US-As)~166

Workload
Microbenchmark

• Single key read-modify-write transaction

• 1 shard, 3 replicas

• Uniform access distribution over 1 million keys
Retwis benchmark

• Read-write transactions based on Retwis

• 5 shards, 3 replicas

• Zipf distribution (co-efficient=0.6) over 1 million keys

Systems
• TAPIR: Transactional storage with strong

consistency with inconsistent replication

• TXN: Transactional storage with strong
consistency

• SPAN: Spanner read-write protocol

• QW: Non-transactional storage with weak
consistency with write everywhere, read
anywhere policy

System Comparison
Transaction

Protocol
Replication

Protocol
Concurrency

Control

TAPIR 2PC Inconsistent
Replication OCC

TXN 2PC Paxos OCC

SPAN 2PC Paxos Strict 2-Phase
Locking

QW None Write everywhere,
Read anywhere None

Cluster Microbenchmark Latency
Tr

an
sa

ct
io

n
La

te
nc

y
(m

icr
os

ec
on

ds
)

0.0

150.0

300.0

450.0

600.0

TXN SPAN QW TAPIR

Wide-area Deployment

Europe
Asia

US
100ms166ms

260ms

Wide-area Deployment

Europe
Asia

US
100ms166ms

260ms

LEADER

Wide-area Deployment

Europe
Asia

US
100ms166ms

260ms

App 
server 

LEADER

Wide-area Deployment

Europe
Asia

US
100ms166ms

260ms

App 
server 

LEADER

Wide-area Deployment

Europe
Asia

US
100ms166ms

260ms

App 
server  LEADER

Wide-area Retwis Latency

Wide-area Retwis Latency
Tr

an
sa

ct
io

n
La

te
nc

y
(m

illi
se

co
nd

s)

0

200

400

600

800

TXN SPAN QW TAPIR

US
EUROPE
ASIA

Wide-area Retwis Latency
Tr

an
sa

ct
io

n
La

te
nc

y
(m

illi
se

co
nd

s)

0

200

400

600

800

TXN SPAN QW TAPIR

US
EUROPE
ASIA

Wide-area Retwis Latency
Tr

an
sa

ct
io

n
La

te
nc

y
(m

illi
se

co
nd

s)

0

200

400

600

800

TXN SPAN QW TAPIR

US
EUROPE
ASIA

Wide-area Retwis Latency
Tr

an
sa

ct
io

n
La

te
nc

y
(m

illi
se

co
nd

s)

0

200

400

600

800

TXN SPAN QW TAPIR

US
EUROPE
ASIA

Wide-area Retwis Latency
Tr

an
sa

ct
io

n
La

te
nc

y
(m

illi
se

co
nd

s)

0

200

400

600

800

TXN SPAN QW TAPIR

US
EUROPE
ASIA

Microbenchmark Throughput

Tr
an

sa
ct

io
n

Th
ro

ug
hp

ut
 (t

xn
/s

ec
on

d)

0

4500

9000

13500

18000

Number of Clients
0 10 20 30 40

TXN
SPAN
TAPIR
QW

Microbenchmark Throughput

Tr
an

sa
ct

io
n

Th
ro

ug
hp

ut
 (t

xn
/s

ec
on

d)

0

4500

9000

13500

18000

Number of Clients
0 10 20 30 40

TXN
SPAN
TAPIR
QW

Microbenchmark Throughput

Tr
an

sa
ct

io
n

Th
ro

ug
hp

ut
 (t

xn
/s

ec
on

d)

0

4500

9000

13500

18000

Number of Clients
0 10 20 30 40

TXN
SPAN
TAPIR
QW

Microbenchmark Throughput

Tr
an

sa
ct

io
n

Th
ro

ug
hp

ut
 (t

xn
/s

ec
on

d)

0

4500

9000

13500

18000

Number of Clients
0 10 20 30 40

TXN
SPAN
TAPIR
QW

Microbenchmark Throughput

Tr
an

sa
ct

io
n

Th
ro

ug
hp

ut
 (t

xn
/s

ec
on

d)

0

4500

9000

13500

18000

Number of Clients
0 10 20 30 40

TXN
SPAN
TAPIR
QW

Microbenchmark Throughput

2x

Tr
an

sa
ct

io
n

Th
ro

ug
hp

ut
 (t

xn
/s

ec
on

d)

0

4500

9000

13500

18000

Number of Clients
0 10 20 30 40

TXN
SPAN
TAPIR
QW

Microbenchmark Throughput

2x

Tr
an

sa
ct

io
n

Th
ro

ug
hp

ut
 (t

xn
/s

ec
on

d)

0

4500

9000

13500

18000

Number of Clients
0 10 20 30 40

TXN
SPAN
TAPIR
QW

Microbenchmark Throughput

2x

2x

Retwis Throughput
Tr

an
sa

ct
io

n
Th

ro
ug

hp
ut

 (t
xn

/s
ec

on
d)

0

3000

6000

9000

12000

Number of Clients
0 20 40 60 80

TXN
SPAN
TAPIR
QW

Summary

• TAPIRs are surprisingly
fast.

• Replication does not
have to be consistent
for transactions to be.

• Transactions do not
have to be expensive.

