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Distributed storage systems provide crucial 
guarantees for datacenter applications:

Scalability

Fault-tolerance

Durability



Distributed Storage Architecture

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition CStorage Partition A Storage Partition B Storage Partition CDistributed Storage System



Distributed Storage Architecture

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

Clients

Storage Partition A Storage Partition B Storage Partition CDistributed Storage System



Distributed Storage Architecture

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

Clients

Storage Partition A Storage Partition B Storage Partition C



Distributed Storage Architecture

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

Clients

Scalability

Storage Partition A Storage Partition B Storage Partition C



Distributed Storage Architecture

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

Clients

Scalability



Distributed Storage Architecture

App 
server 

App 
server 

Storage Partition BStorage Partition A Storage Partition C

Clients

Scalability

Fault-tolerance Fault-tolerance Fault-tolerance



Consistency guarantees are 
important in a distributed system.
Guides programmer reasoning about: 

• application state (i.e., what is a valid state, 
what invariants can I assume) 

• concurrency (i.e., what happens when two 
writes happen at the same time) 

• failures (i.e., what happens when the 
system fails in the middle of an operation)



Some systems have weaker 
consistency guarantees.

• Eventual consistency - eventual ordering of 
operations and applications resolve conflicts 

• No atomicity or concurrency control -
applications use versioning and explicit locking 

• Examples: Dynamo, Cassandra, Voldemort



Some systems have strong 
consistency guarantees.

• ACID distributed transactions - help 
applications manage concurrency 

• Strong consistency/linearizable isolation - 
strict serial ordering of transactions 

• Examples: Spanner, MegaStore



Distributed transactions are 
expensive in a replicated system.

• Distributed transactions with strong 
consistency require replication with 
strong consistency. 

• Replication with strong consistency 
imposes a high overhead.
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Strong Consistency 
General Transaction Model
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Rest of this talk

1. The cost of strong consistency 
2. TAPIR - the Transactional Application 

Protocol for Inconsistent Replication 
3. Evaluation 
4. Summary
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Existing transactional storage systems use 
a transaction protocol and a replication 
protocol that both enforce strong 
consistency.

Why is consistency so expensive?



Rest of this talk

1. The cost of strong consistency 
2. TAPIR - the Transactional Application 

Protocol for Inconsistent Replication 
3. Evaluation 
4. Summary



TAPIR

Transactional Application Protocol 
for Inconsistent Replication



TAPIR

The first transaction protocol to 
provide distributed transactions with 

strong consistency using a replication 
protocol with no consistency.



Inconsistent Replication
A new replication protocol that: 

• Provides fault-tolerance without 
consistency 

• Supports unordered record, instead of 
ordered log 

• Requires no cross-replica coordination 

• Does not rely on synchronous disk writes
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Handling Inconsistency
TAPIR uses several techniques to cope 
with inconsistency across replicas: 

• Loosely synchronized clocks for 
transaction ordering. 

• Optimistic concurrency control to 
detect conflicts with a partial history. 

• Multi-versioned storage for applying 
updates out-of-order.
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Handling Inconsistency
TAPIR uses several techniques to cope 
with inconsistency across replicas: 

• Loosely synchronized clocks for 
optimistic transaction ordering at clients. 

• Optimistic concurrency control to 
detect conflicts with a partial history. 

• Multi-versioned storage for applying 
updates out-of-order.



• OCC checks just one 
transaction at a time, so 
a full transaction history 
is not necessary. 

• Every transaction 
committed at a majority. 

• Quorum intersection 
ensures every 
transaction is checked.
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• Backing store versioned 
using transaction 
timestamp. 

• Replicas periodically 
synchronize to find 
missed transactions. 

• Backing store converges 
to same state, regardless 
of when the updates are 
applied. Storage Partition C
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Experimental Questions
Does TAPIR improve latency? 

• In a single cluster? 

• Across datacenters? 
Does TAPIR improve throughput? 

• For low contention workloads? 

• For high contention workload?



Deployment
Cluster  

• Servers connected via 12 switch fat-tree topology  

• Average clock skew: ~6us 

• Average RTT: ~150us 
Wide-area  

• Google Compute Engine VMs in Asia, Europe and US 

• Average clock skew: ~2ms 

• Average RTT: (Eu-A)~260 (Eu-US)~110 (US-As)~166



Workload
Microbenchmark  

• Single key read-modify-write transaction 

• 1 shard, 3 replicas 

• Uniform access distribution over 1 million keys 
Retwis benchmark 

• Read-write transactions based on Retwis 

• 5 shards, 3 replicas 

• Zipf distribution (co-efficient=0.6) over 1 million keys



Systems
• TAPIR: Transactional storage with strong 

consistency with inconsistent replication 

• TXN: Transactional storage with strong 
consistency 

• SPAN: Spanner read-write protocol 

• QW: Non-transactional storage with weak 
consistency with write everywhere, read 
anywhere policy



System Comparison
Transaction 

Protocol
Replication 

Protocol
Concurrency 

Control

TAPIR 2PC Inconsistent 
Replication OCC

TXN 2PC Paxos OCC

SPAN 2PC Paxos Strict 2-Phase 
Locking

QW None Write everywhere, 
Read anywhere None
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Wide-area Retwis Latency
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Microbenchmark Throughput
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Retwis Throughput
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Summary

• TAPIRs are surprisingly 
fast. 

• Replication does not 
have to be consistent 
for transactions to be. 

• Transactions do not 
have to be expensive.


