Fast Restore of Checkpointed Memory
using Working Set Estimation

Irene Zhang Alex Garthwaite

Yury Baskakov

Kenneth C. Barr

VMware, Inc.
{izhang, alextg, ybaskako, kbarr}@vmware.com

Abstract

In order to make save and restore features practical, saved virtual
machines (VMs) must be able to quickly restore to normal operation.
Unfortunately, fetching a saved memory image from persistent
storage can be slow, especially as VMs grow in memory size.
One possible solution for reducing this time is to lazily restore
memory after the VM starts. However, accesses to unrestored
memory after the VM starts can degrade performance, sometimes
rendering the VM unusable for even longer. Existing performance
metrics do not account for performance degradation after the VM
starts, making it difficult to compare lazily restoring memory against
other approaches. In this paper, we propose both a better metric for
evaluating the performance of different restore techniques and a
better scheme for restoring saved VMs.

Existing performance metrics do not reflect what is really impor-
tant to the user—the time until the VM returns to normal operation.
We introduce the time-to-responsiveness metric, which better char-
acterizes user experience while restoring a saved VM by measuring
the time until there is no longer a noticeable performance impact on
the restoring VM. We propose a new lazy restore technique, called
working set restore, that minimizes performance degradation after
the VM starts by prefetching the working set. We also introduce
a novel working set estimator based on memory tracing that we
use to test working set restore, along with an estimator that uses
access-bit scanning. We show that working set restore can improve
the performance of restoring a saved VM by more than 89% for
some workloads.

Categories and Subject Descriptors D.4.5 [Reliability]: Check-
point/restart

General Terms Measurement, Performance

Keywords Checkpoint/restore, Performance

1. Overview

Virtual machines (VMs) have become one of the primary computing
environments in the cloud. One benefit of virtualization is the ability
to save and restore the state of a running VM. This ability enables
users to suspend an idle VM, pausing its execution, which can free
up data center resources and reduce power usage. It also allows

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’11, March9-11, 2011, Newport Beach, California, USA.

Copyright © 2011 ACM 978-1-4503-0501-3/11/03. .. $10.00

users to checkpoint a VM, freezing the VM at a single point in
time, which is used for backup and fault tolerance. Outside of the
cloud, VMs have become ubiquitous on desktops and laptops as
well. These users save VMs for similar reasons, suspending VMs
to allow them to easily return to previous work while freeing up
resources for other applications, and checkpointing VMs to save
their operating system and applications in a known good state.

In order to make suspending and checkpointing VMs practical,
the hypervisor must be able to quickly restart the VM from a saved
state. Users are more inclined to suspend an idle VM if it takes
seconds to resume rather than minutes. The ability to restore quickly
from a saved image can also enable many other useful features. For
example, cloud service providers would like to be able to quickly
boot stateless VMs, allowing them to dynamically allocate VMs as
needed. This quick-boot feature could be simulated by restoring to
a checkpoint taken right after boot if the restore process is very fast.

It is challenging to restore a saved VM quickly because the VM’s
saved state must be retrieved from slow persistent storage. This state
includes some CPU and device state, and the contents of the VM’s
memory. Restoring the saved memory image, which is generally an
order of magnitude or two larger than device state, takes the bulk of
the time. The time to restore a VM continues to grow as the memory
requirements of virtual machines increase while the speed of storage
does not keep pace. Reflecting the growth in memory size for PCs,
VMs 10 years ago typically had less than 256 MB of memory, while
today 1 GB VMs are common on laptops and PCs and even larger
VMs are used in datacenters.

The simplest approach to resuming a VM’s execution is to restore
all memory contents at once, along with the device state. We call
this method eager restore because the hypervisor eagerly retrieves
and sets up all guest memory before starting the guest. The time to
restore a VM this way increases linearly with the size of the VM.
This method worked well when VMs used relatively small amounts
of memory, but cannot be sustained as the size of VM memory
grows. It takes tens of seconds to retrieve a few hundred megabytes
of saved memory contents from disk, but this time increases to
minutes as the saved memory image becomes larger than a gigabyte.

An alternate approach is to load only the CPU and device
state before starting execution, and restore memory contents in the
background while the VM runs. Any time the VM touches memory
that has not yet been restored, the hypervisor pauses the execution of
the VM and retrieves that memory from disk. Because the memory
contents are retrieved when the VM accesses that memory, we
call this approach lazy restore. This approach is appealing because
the VM starts much faster, after retrieving only a small amount of
device state, and the cost does not grow with the VM’s memory size.
However, whenever the VM accesses a page of memory that has not
yet been restored, the contents of that page must be faulted in from
disk on-demand, and the execution of the VM cannot be resumed
until the page has been retrieved.

Handling these on-demand page faults can have a significant
performance impact. Previous research has shown that users notice
if the response time to a user action exceeds 100 milliseconds, and
become frustrated if it exceeds 1 second [17, 23]. With disk seek
times on the order of 10 milliseconds, this allows only around 10
accesses to unrestored memory before the user notices performance
degradation and around 100 accesses before the user becomes
frustrated. Unfortunately, even simple user actions like moving the
mouse can require hundreds of memory accesses, giving some idea

of the performance impact if all of those accesses cause a page fault.

Our experiments and previous user reports reflect this—even though
the VM is running during the lazy restore, it is so slow that it is
essentially unusable. In fact, we found that the VM’s performance
can be impacted severely for so long during a lazy restore that eager
restore can actually seem to perform better from the user’s point of
view. !

Neither the eager approach nor the lazy approach to restoring a
saved VM offer ideal performance for the user. Instead, we propose
using a hybrid approach that prefetches the working set of the
VM’s memory, then starts the VM and restores the rest of memory
lazily. We call this approach working set restore. By prefetching the
working set, we minimize the performance degradation after the VM
starts because most of the memory that the VM accesses will have
already been restored. Working set prefetching is commonly used
for applications [11]; our contribution is to apply it to the problem
of optimizing the restore of a saved VM.

The success of working set restore depends on the accuracy of

the working set estimator. We discuss two estimators in this paper.
The first is a working set estimator that uses access-bit scanning.

While the access-bit scanning technique is simple, it still does a
good job of finding the working set. Our experiments show that, for
some workloads, the access-bit working set estimator was able to
predict up to 98.6% of the VM’s accesses while the VM is being
restored. We also implemented a novel technique for checkpointed
VMs that traces memory access during checkpointing to gather
the working set. Our insight is that when a checkpointed VM is
restored, it returns back to the point where checkpointing began. If
the VM is deterministic, it should re-execute in the same way after
it restores as when it was checkpointed. This means that we can
almost perfectly predict the memory accesses of the VM after it
starts by tracing memory accesses during the checkpointing. Our
experiments show this to be true; we found that we could predict up
t0 99.2% of memory accesses using this technique.

It is difficult to measure the performance benefit of working
set restore using existing metrics because they do not account
for performance degradation after the VM starts. The two most
commonly used metrics are the total time to restore the VM and
the time until the VM starts. The total time to restore the VM does
not account for the fact that, during a lazy restore, the VM starts
(and the user may be able to use the VM) long before the entire
VM is restored. Using the total time until the VM starts avoids this
problem, but does not account for the fact that the VM might not
be usable after it starts. This paper presents a new metric, called
time-to-responsiveness (TTR), that better measures the time until
the VM appears restored to the user (i.e. the time until the VM
returns to normal operation). Time-to-responsiveness builds on the
idea of a minimum mutator utilization (MMU) [3, 4, 14], a metric
previously used to measure the ongoing overhead of a service like
garbage-collection techniques. We extend MMU to give us the time
until the overhead of the restore process has fallen to an acceptable
level for the VM to appear restored.

I For this reason, VMware Workstation 7.0 switched from lazy restore back
to eager restore.

The rest of this paper is organized as follows. In Section 2 we
examine the problem with the two existing metrics for comparing
restore techniques and explain our new time-to-responsiveness
metric. Section 3 gives background on the checkpoint and suspend
mechanism in VMware Workstation that working set restore is
built on. In Section 4, we present the design and implementation
of working set restore for VMware Workstation. This section
also details our simple working set estimator using access-bit
scanning and our new working set estimator that uses memory
tracing. Section 5 evaluates the performance benefit of working set
restore and how the accuracy of the working set estimator affects
performance using our time-to-responsiveness metric. Section 6
discusses related work, and Section 7 concludes.

2. Measuring Restore Performance

One reason designing a better restore scheme is difficult is that there
are no effective metrics to compare the performance of different
restore schemes. Using the total time to restore or the time until
the VM starts to measure performance can make eager restore
or lazy restore appear optimal. However, neither metric reflects
what is really important to the user, which is the time until the
VM and its applications return to normal performance. With this
observation, we propose a new time-to-responsiveness metric that
better characterizes the user experience while restoring a saved VM.

2.1 Common Metrics

There are two commonly used metrics for measuring restore per-
formance: the total time to restore the VM and the time until the
VM starts. Both are appealing metrics because they are easy to mea-
sure and understand. The total time to restore the VM measures the
amount of time it takes for all of the VM’s memory to be copied
from persistent storage to host memory. For eager restore, the total
time to restore depends on the size of the saved VM and the speed
of the persistent store. The performance of eager restore using this
metric scales linearly with the size of the VM’s memory. For this
metric, eager restore is optimal because it allows memory to be
linearly fetched from the disk as fast as possible, maximizing disk
throughput. Lazy restore can take quite some time to completely
finish because memory is restored only when it is accessed by a VM
or touched by a slow-running background thread. Therefore, the
performance is bounded by the memory size of the saved VM and
the speed at which the background thread retrieves memory. If the
VM is not using most of its memory, the background process could
take a long time to restore all of memory because it is not important
to quickly restore memory that is not being used. However, this
metric does not account for the fact that the VM has started and
the user might be able to use the VM long before the lazy restore
completely finishes.

The time until the VM starts measures the time until the VM is
able to begin execution of the guest. This metric better accounts for
the fact that the VM might start before it is completely restored. For
eager restore, this metric is the same as the total time to restore the
VM because the VM does not start until it is completely restored.
The performance of a lazy restore using this metric depends on the
size of the device state of the saved VM and disk speed. Unlike
eager restore, the performance of lazy restore for this metric does
not decrease with the size of memory. Using this metric, it appears
that lazy restore is optimal because the device state is the minimal
state that must be restored before the VM can start, so the VM
starts as soon as possible. However, we observed that the VM is not
immediately usable during a lazy restore because of performance
degradation caused by accesses to unrestored memory. Depending
on the severity of the performance degradation, the user cannot
necessarily use the VM and its applications although the VM has
started. While the time until the VM starts better accounts for restore

performance than the total time to restore, it still does not measure
when the VM becomes responsive to the user.

2.2 Mutator Utilization

Instead of measuring the total time to restore or start the VM, a
better metric for restore performance should measure the time until
the VM appears to be restored, which is when the performance
degradation is no longer apparent to the user. In order to pinpoint
that time, we must be able to measure the performance degradation
of different restore schemes after the VM starts.

Measuring the performance degradation of a service has been
well studied. In particular, work on the impact of pause times caused
by garbage-collection makes use of the notion of a minimum mutator
utilization (MMU) to evaluate and compare different garbage-
collection techniques [3, 4, 14]. Pause times are periods in which an
application—the mutator—is inactive while the garbage collector
(GC) performs some amount of work. In the context of restore,
the VM and its applications can be considered the mutator and the
pauses caused by accesses to unrestored memory can be considered
similar to pause times. The MMU is the lowest utilization achieved
by the application during its execution for some application-specific
window of time; the window reflects both the scheduling needs of
the application and the fact that GC pauses may not be uniformly
distributed or of equal duration.

Unlike a service like garbage collection that is on-going, a restore
is limited by the size of the VM’s memory. When the VM first
starts it may access a lot of unrestored memory, but as more of
its memory is restored, either by accesses from the VM or by the
background thread, the accesses to unrestored memory will slow
and eventually stop. It is important to measure this change over time,
so a single minimum mutator utilization is not sufficient. But we
can apply the idea of a mutator utilization as a way of measuring
performance degradation over time. We can track the performance
degradation caused by the ongoing restore process by measuring
how much time was spent restoring memory and how much time
was available to the guest OS and other “normal” processes, the
mutator, during a particular window of time after the VM starts. For
that window, if most of the time is spent restoring memory, then the
VM’s performance must suffer. If most of that window was spent
running the guest OS or doing other normal work, then the VM must
be running normally.

=
(=}
|

o
o0
|

o
[=)}
|

o
'S
!

Kraction of time spent restoring
<
[
Il

. /

20 ' 40 60
Elapsed Time (seconds)

g
=}

Figure 1. Fraction of each second restoring pages accessed by
the VM during the lazy restore of a 1 GB VM running Red Hat
Enterprise Linux 4. For the first 20 seconds, almost 0% of the
time is available to the VM, which will lead to severe performance
degradation. After the first 20 seconds, the VM will see minimal
overhead from memory being lazily restored except for a few spikes,
causing small lags.

As an example, Figure 1 shows the fraction of time spent
restoring memory during the lazy restore of a typical Linux VM. It

0.8 d |
: 1
S i |
T 0.6 / ' i
.§ - ! —— Window: 0.1 seconds
= 3 ! ----Window: 1 second
= 044 [Window: 10 seconds
= el
= [
0.2 !
. 1
.. 1
1
__________ 1
0.0 T T T
0 20 40 60

Elansed Time (seconds)

Figure 2. Minimum utilization of an idle RHEL VM during a lazy
restore as shown in Figure 1. For each level of performance, the
z-axis shows the corresponding TTR. Ideally, the percentage rises
to 1 as quickly as possible, returning the system to 100% utilization.

is clear from Figure 1 that there must be significant performance
degradation for the first 20 seconds, as nearly all time is devoted to
restoring memory. After the first 20 seconds, the VM is probably
running normally because there is very little overhead (other than a
few spikes) imposed by restoring memory and most of the time is
spent doing normal work in the guest or elsewhere.

2.3 Time-to-responsiveness (TTR)

The utilization graph shows how the restore process affects the VM
after it starts. In order to pinpoint the time when the performance
degradation of the restore process is no longer apparent to the
user, we extend the notion of MMU to calculate the time-to-
responsiveness (TTR) metric for restoring a saved VM. We define
TTR as:

TTR(w, u) = min{¢tMMUyy > (w) > u}

where the time-window w and desired utilization u are application-
specific parameters. TTR is the earliest time such that from that
point forward in the execution of the VM, we achieve a minimum
level of utilization for the VM. The level of performance is entirely
application-dependent because some applications can tolerate more
performance degradation than others, so we look at TTR as a curve
instead of a single number. In general, we choose to fix w and then
plot TTR as minimum utilization over time, which shows, for each
point in time ¢, the minimum mutator utilization from ¢ until the
end of the restore. To find the actual time until the performance
degradation is no longer apparent from such a graph, we need
to determine the minimum utilization that the VM can tolerate.
For example, for VMs and applications that can operate normally
with at least 90% of the execution time each second, the minimum
utilization for TTR would be 90% with a one second window.

Figure 2 shows the TTR graph for the example from Figure 1
with window sizes of 0.1 seconds, 1 second and 10 seconds. From
such a graph, one can choose a suitable level of performance
and identify the earliest point in the restore process where the
minimum utilization is achieved. Such a point is the TTR for the
corresponding level of performance. One can see that when the
minimum utilization is 0, the TTR is also 0, so a VM that can tolerate
any degree of performance degradation and still operate normally
can be considered restored right away. When the level is 100%, the
TTR is the time that the last page was restored on-demand. VMs that
require all of the system time (i.e. cannot tolerate any performance
degradation) cannot be considered fully restored until there are no
more pages to be restored on-demand. Section 5 discusses how the
TTR metric correlates to actual application performance.

To compare restore schemes using TTR, we can compare TTR
for each scheme for a particular window and minimum utilization.
Alternatively, we could plot the TTR curves for each scheme, giving
a comparison over a range of applications. The TTR for an eager
restore is always the same for all window sizes and minimum
utilizations because eager restore does not impact the performance
of a VM after it starts. We show the TTR of a lazy restore in Figure 2;
the TTR of eager restore for the same VM is 32 seconds. Using
TTR to compare, it becomes less obvious whether eager restore
or lazy restore are optimal. For the example VM, the TTR of both
eager and lazy restore is about 32 seconds, if the VM can tolerate a
minimum utilization of 80% for a window size of 1 second. With
TTR, one can see that both eager and lazy restore are optimal for
certain classes of applications. In this example, if the VM requires
a minimum utilization of more than 80% for a window size of
0.1 seconds, which would indicate that it is running a very time-
sensitive application, then eager restore would be the better choice.
If the VM can tolerate a minimum utilization of 80% for a window
size of 10 seconds, then lazy restore would be the better solution.
This conclusion makes sense intuitively: lazy restore is better for
applications that can tolerate more performance degradation and
eager restore is better for applications that cannot.

3. Saving and Restoring in VMware Workstation

We implemented a prototype of working set restore using the sus-
pend and checkpoint features in VMware Workstation. Workstation
is a hosted hypervisor that runs guest OSes on top of a host OS, in
contrast to a native hypervisor, which runs directly on hardware [22].
This section describes how Workstation saves and restores VM mem-
ory for suspend and checkpoint, providing context for the design
of working set restore discussed in the next section. Both suspend
and checkpoint use the same mechanism, so working set restore
improves the performance of both.

3.1 Memory Model

In a hosted hypervisor, the hypervisor must depend on the host
to allocate memory for the VM. Workstation backs guest memory
using a memory-mapped file, called the paging file. In addition to
being used for backing guest memory, Workstation directly uses
the paging file as the VM’s saved memory image for a suspend.
Workstation uses a copy of the paging file as the saved memory
image for a checkpoint to keep the format of the memory image
identical for suspended and checkpointed VMs, so that one restore
mechanism can be used for restoring both.

Workstation uses the memory pages allocated by the host for
the paging file to store pages of guest memory. Workstation sets
up page tables to allow the guest to directly access this memory.
The paging file is a raw data file and stores the VM’s memory
sequentially by guest physical address. For example, the first 4096
bytes of the paging file are the first page of guest physical memory
and so on. The advantage of keeping the paging file unformatted
and memory-mapped is that the host OS can do almost all of the
work in managing the memory pages backing guest memory; the
hypervisor only needs to manage memory mappings for the guest.

3.2 Suspend and Checkpoint Mechanisms

Workstation supports both suspending and checkpointing VMs. An
important difference between the two features is that a checkpointed
VM continues to run after the checkpoint. We will discuss the
process of suspending a VM first as it is simpler. Since the VM
stops running after the suspend, Workstation can directly use the
VM’s current paging file as the saved memory image. This makes
the process of saving a VM’s memory for suspend relatively easy.
Workstation just unmaps the paging file, being sure to mark pages
that are dirty. The host OS will handle writing dirty pages to disk.

Checkpointing a VM is more complicated because Workstation
must make a copy of the paging file. Workstation cannot directly
use the VM’s paging file in this case because the VM continues
running and using its paging file after the checkpoint. To minimize
the impact on the running VM, Workstation stops the VM, saves
the device state, and then restarts the VM and copies the paging
file lazily while the VM continues running. A background thread
linearly scans pages of memory, copying them to the saved paging
file. Since the VM continues to modify memory, Workstation must
ensure that no memory is overwritten before the background thread
copies it to the saved paging file. It does this by using memory write
traces. Write traces notify the hypervisor before the guest OS writes
to a traced page. For checkpointing, Workstation puts write traces
on all guest memory pages. When the guest tries to write to one of
those pages, the write trace will trigger. Workstation will copy the
page to the saved paging file and remove the write trace on the page,
then allow the guest to write to the page. The background thread
removes write traces as it scans through memory because the guest
is free to write any page that the background thread has already
copied.

3.3 Restore Mechanisms

VMware Workstation can restore suspended and checkpointed VMs.
Workstation must preserve the state of a checkpointed VM when
restoring it, so that the VM can be restored back to that checkpoint
again, which is not necessary with a suspended VM. Since we do not
have to worry about preserving the state of a suspended VM, we can
directly use the saved paging file as the paging file for the running
VM. The paging file is memory-mapped into the hypervisor’s
address space and used to back guest memory. Workstation touches
each page of the paging file to force the host to allocate a page and
bring the memory contents off of disk, and to set up meta-data for
the page. Again, because the file is memory-mapped, the host will
take care of allocating memory and reading the file from disk.

Workstation cannot directly use the saved paging file as the
paging file for a checkpointed VM, so it must first make a copy of
the old paging file. Workstation allocates a memory-mapped file,
then copies the saved paging file into that file. This process has the
same effect as touching each page when restoring a suspended VM;
it causes the host to allocate a page, then Workstation copies the
page from the old paging file into the page and sets up the meta-data
for the page. At this point, Workstation can start execution of the
VM.

The process just described is eager restore for suspended or
checkpointed VMs. Workstation also supports lazy restore for both
suspended and checkpointed VMs. Instead of touching or copying
each page of the paging file before starting the VM, Workstation
starts the VM first. While the VM runs, Workstation executes
a separate thread in the background that touches, and copies if
necessary, the pages of the paging file. To keep track of which pages
have been touched, Workstation keeps a bitmap of restored pages.
When the guest accesses an unallocated page, the hypervisor checks
if the page is unrestored. If so, the hypervisor restores the page
on-demand by touching it, which causes the host OS to allocate
a page and fetch the contents from disk, and copying the page if
necessary.

4. Working Set Restore

Working set restore is built on the features of VMware Workstation
discussed in the last section. First, we discuss techniques for
estimating the working set of the VM. Then, we explain the details
of implementing working set restore.

4.1 Working Set Estimation

We implemented two working set estimators: one using access-bit
scanning and another using memory traces to track memory ac-
cesses. Estimating the working set by access-bit scanning works for
both suspend and checkpoint, while estimating the working set using
memory tracing only works for checkpoint. Using access-bit scan-
ning is more general-purpose, but imposes a constant overhead while
the VM runs. Our implementation requires a hardware MMU [2],
which most modern machines support. Access-bit scanning can also
be done with a software MMU, but it imposes a greater overhead
and misses some accesses. Using memory tracing only works for
checkpoints, but it only imposes an overhead during the checkpoint-
ing process, which has an overhead anyway. Our experiments found
using memory tracing to be more accurate at estimating the working
set.

4.1.1 Access-bit Scanning

Our implementation of working set estimation using access-bit
scanning works like a simplified CLOCK algorithm [8]. We use
the flags in the page table entries to monitor the access patterns of
the guest OS. We constantly loop over the page tables, scanning and
clearing access-bits in the background while the VM is running. Any
page whose access-bit has been set during the scan loop is marked
as being part of the working set. The speed at which the scanner
runs depends on the time it takes to restore the VM. In particular,
we would like to scan memory at about the same speed at which
it is restored by the background thread. This is simple because the
speed of the background thread is set by a configuration option, so
the speed of the scanner can be set using the same configuration
option. By making the two rates equal, the working set we get is
approximately the number of pages that the guest OS touches during
the amount of time that it takes for a restore. If the page scanning
rate is too fast or slow, then we will underestimate or overestimate
the number of pages that we need to prefetch. We would like to
avoid overestimating because a larger working set takes longer to
copy when saving the VM and prefetch when the VM is being
restored. Underestimating the working set, even by a small amount,
can degrade performance during the lazy restore, as we show in
Section 5.4.2.

4.1.2 Memory Tracing

The insight that motivates using memory traces for working set
estimation is that when a checkpointed VM is restored, it returns
to the point where lazy checkpointing of memory began. Thus, if
the VM is deterministic, it will re-execute the same code that it
executed during the lazy checkpoint period. Most VMs are not
perfectly deterministic, as timing can change, so the prediction will
not be perfect. However, our experiments show that this working
set estimator comes close to having an oracle predict the memory
accesses of the VM during the lazy restore.

To capture the memory accesses during the lazy checkpointing
process, we add read traces to the write traces that Workstation uses
already. Like write traces, read traces notify the hypervisor before
the guest reads a page of memory. When notified of a read or a write
during the lazy checkpoint, we note that the guest accessed that page
and add it to our working set. If it is a write trace that triggered, we
copy the page as usual and remove both traces. There is no need to
leave the traces in place once the page has been added to the working
set, so we remove them to reduce the performance overhead. If it
is a read trace that triggered, we add the page to our working set
and remove the read trace, leaving the write trace. It is not necessary
to copy the page for reads, so we do not. This reduces the cost of
handling a read trace since reads are more common than writes. We
need to leave the write trace intact because the guest might still
write to the page, at which point we would have to copy the page.

For pages that are copied by the background thread, we leave the
read and write traces in place. Leaving both traces in place ensures
that we do not miss any page accesses, but adds some overhead to
the lazy checkpointing process. However, the overhead is minimal
because we only need to set a bit when those traces trigger, rather
than copying a page to disk.

4.2 Saving and Restoring the Working Set

For a checkpoint or suspend, the working set must be saved with the
VM after it is collected. Depending on the working set estimator,
the working set is either collected continuously, for the access-bit
scanning estimator, or during the checkpointing process, for the
memory tracing estimator. After the working set has been collected,
the pages in the working set are copied to a separate file, so that
they are stored sequentially on disk. This copying incurs some cost
when saving the VM. We save the working set separately from the
memory image because the saved memory image shares the same
format as the paging file. It is possible to avoid the cost of copying
the working set by reorganizing the saved memory image to group
the pages in the working set together, but that would negate the
advantages of keeping the format of the paging file and the saved
memory image of a checkpointed VM the same. We also save a
bitmap of which pages in memory are in the working set, which is
an efficient way of saving the guest physical address of each page in
the working set.

Working set restore depends on both lazy and eager restore
mechanisms in VMware Workstation. Working set restore first
pre-restores the working set by copying pages from the saved
working set file into the paging file before starting the VM. It marks
those pages as restored in the bitmap that tracks restored pages.
Workstation then starts the VM and restores the rest of memory in
the background while the VM runs. Like lazy restore, if the VM
accesses unrestored memory, it causes a page fault and Workstation
restores (by either touching or copying) the page on-demand.

5. Evaluation

This section evaluates the performance of working set restore. We
answer the following questions:

e Does working set restore improve overall performance?
e Does time-to-responsiveness correlate to user experience?

e How do eager restore, lazy restore and working set restore
compare using TTR?

e Does working set size affect TTR for different restore tech-
niques?

e How accurate are our working set estimators?

e Does the accuracy of the working set estimator affect the
performance of working set restore?

5.1 Test Setup

We evaluated the performance of working set restore using a
mechanical hard disk. All of the experiments in this paper were
run with dual 2.3 GHz AMD Opteron 2376 Quad-Core processors,
4 GB of memory, and a Seagate model ST3750330AS hard disk with
the specifications shown in Table 1. The AMD Shanghai processor
supports hardware virtualization, allowing us to use hardware page
tables for access-bit scanning. The host OS was 64-bit Ubuntu 9.10.

In general, our testing procedure consisted of the following steps:

1. Run the VM until the VM achieves steady state. Since the steady
state is different for each workload, we define the steady state
separately for each experiment in the following sections.

2. Save the VM along with the working set.

Table 1. Disk Specifications for Seagate ST3750330AS [20]

Interface SATA 3.0Gb/s
Capacity 750 GB
RPM 7200 RPM
Cache 32 MB
Average Latency 4.16 ms
Random read seek < 8.5ms
Random write seek < 9.5 ms

3. Ensure that none of the saved VM state is cached on the host
by clearing out the host buffer cache using sync and echo 3 >
/proc/sys/vm/drop_caches to drop all file caches.

4. Restore the saved VM image with one of the restore techniques.

To ensure fair comparisons between restore techniques, we
restored the same checkpointed VM for each technique. The simple
eager and lazy schemes ignored the working set information saved
in the checkpoint. We saved the working set as estimated by both
access-bit scanning and memory tracing for each checkpoint, so that
we can compare the two techniques with the same checkpointed
VM. Working set restore also works for suspended VMs, but we use
checkpointed VMs because the experiments are easier to replicate
with a checkpoint. The performance for restoring both are similar
because they share the same restore mechanism.

For all of the experiments, we fix the window size for TTR
at 1 second and only draw the minimum utilization curve for that
window size. We believe that 1 second is an appropriate window
size for the applications that we use and is a small enough window
to provide good user responsiveness.

Since the performance of eager restore is always about 32
seconds for our 1 GB VM, we do not include it the graphs. For
our application tests, we plot lazy restore against working set restore
using memory tracing estimator. The performance of working set
restore using both estimators that we implemented is similar, so we
do not include both in our graphs. Section 5.4.1 compares the two
working set estimators that we implemented and shows the effects
of the accuracy of the working set estimator on working set restore.

5.2 Simple Linux Test

First, we revisit the motivating example from Section 2. The VM in
Figure 1 was running 32-bit Red Hat Enterprise Linux 4 Update 4
(Linux 2.6.9-42.0.3ELsmp). We consider the VM to have reached
steady state 20 minutes after booting without any applications
running, so we save the VM after running for 20 mins. In this
experiment, the working set was about 3% of the 1 GB of memory.
The free command reported 36 MB used and 230 MB used for
buffer caches.

We compared the performance of lazy restore and working set
restore by restoring the same saved VM image using both methods.
Figure 3 shows the location in the guest’s physical address space of
prefetched pages and pages restored on-demand. For lazy restore,
there were a large number of accesses to unrestored memory after
the VM starts. There is some locality to the accesses. The cluster of
accesses in the very low physical address space is from the kernel.
The cluster of accesses in the higher physical address space is from
applications. The locality of application accesses is mostly because
the VM is newly booted and has not run many applications yet, so
the physical address space is not yet fragmented.

Working set restore prefetches exactly those regions of memory
where most of the accesses to unrestored memory were during the
lazy restore. Once the VM starts, there are less accesses to unrestored
memory for working set restore compared to lazy restore. The next
section shows how this reduction in accesses to unrestored memory
leads to less performance degradation after the VM starts.

5.3 Application Testing

We evaluated the end-to-end application performance of working set
restore using two sample applications: SPECjbb and MPlayer. Our
goal was to determine the performance improvement of working
set restore for applications and show how TTR correlates with
application performance. We selected these applications because
they are representative of a range of workloads and have a metric
that clearly shows the effects of performance degradation during a
restore. We are interested in MPlayer because it has a small, active
working set (primarily its frame buffer) and it cannot tolerate lag.
SPEC;jbb is interesting because it has a larger working set, with
some parts of the working set being more active than others, and its
performance is not time-sensitive.

Application performance was measured as the instantaneous
performance of the application over time for a relevant metric. We
found the steady state for the application by running the application
by itself in a VM until the chosen metric stabilized. To determine
when the application returned to normal operation on restore, we
measured the time between the start of the restore and when
instantaneous application performance reverted to one standard
deviation of the steady state.

5.3.1 SPECjbb Setup

The Standard Performance Evaluation Corporation’s Java Business
Benchmark (SPECjbb~>'2005) implements a Java application server
in a simulated three-tier system [21]. We ran the benchmark in a
virtual machine with 1 GB of memory and 1 virtual CPU. The guest
operating system was a 32-bit Ubuntu 8.10 Server (Linux 2.6.27-
11-server) running a Java virtual machine (Sun’s JVM 1.5.0_17)
configured with a 768 MB heap. We chose this benchmark because
it exhibits little spatial locality, making it a challenge for simplistic
working set estimators and a good stress of working set restore.

The standard implementation of SPECjbb runs for a fixed amount
of time (several minutes) and outputs the number of business
operations achieved during that amount of time as BOPS: business
operations per second. To capture the instantaneous performance
of SPECjbb, we measured the number of business operations
completed during each second of the test and plotted the BOPS
over time.

When running in a VM, the BOPS metric is relative to guest time.
Unfortunately, such performance metrics can be inaccurate because
of different timing behavior in virtualized environments [24]; these
timing effects are exacerbated while the VM is being restored. Thus,
we modified the benchmark to respond to periodic requests from
an external monitoring computer. That computer sent a periodic,
timestamped status request to the virtual machine over a UDP
channel. The modified workload replied with the number of elapsed
business operations. This allowed us to monitor the performance of
SPEC;jbb in the VM over time using wallclock time.

We instantiate two warehouses, the recommended set up for a
single CPU VM, which have a working set of 190 MB. The steady
state number of BOPS per second for SPECjbb depends on the speed
of the host machine running the VM. In this case, the steady state
performance was around 8307 BOPS, with a standard deviation of
440 BOPS.

5.3.2 MPlayer Setup

Enjoyment of multimedia playback relies on good interrupt service
latency and low jitter. Thus, we chose a video playback benchmark
as another stress test of working set restore; any slowdown during
the restore will be evident in the frames-per-second metric. We used
MPlayer version 1.0rc2-4.2.4 in a 64b Ubuntu 8.04.3 LTS virtual
machine (Linux 2.6.24-24-generic SMP). We played a 320x240
24bpp video clip encoded with AVC1 at 29.970 frames-per-second
(fps). Thus, the steady state is ~30 fps.

200000

2500004 g"é T
W

L

+ o+

150000
+ On-demand
100000

50000

Guest Physical Page Number

50 100 150
Elapsed Time (seconds)

250000+
S + .
2 ot *
£ 200000 g v .
z 5 . .
D
= 150000]
E + On-demand
s x Prefetch
% 100000
>
=
&
2 50000
D
=
O]

0%+ ‘ ‘ ‘

50 100 150

Elapsed Time (seconds)

Figure 3. Comparison of location of page requests for a lazy restore (left) and working set restore (right). On-demand pages are unrestored
pages accessed by the VM after it starts. Prefetch pages are pages in the working set that were prefetched by working set restore. Working set
restore prefetches the pages that were restored on-demand during the lazy restore, reducing the number of accesses to unrestored memory after

the VM starts.

MPlayer was modified to augment its existing continuous
progress report with timestamps. After each frame was decoded, the
program logged the current time and the number of decoded video
frames. This allowed us to compute a continuous fps metric. When
playback drops below ~30 fps, we consider the performance to be
degraded.

5.3.3 Performance Evaluation

We first discuss the end-to-end performance impact of working set
restore for our two applications. Figure 4 shows the instantaneous
throughput of SPECjbb during a lazy restore and a working set
restore. For the lazy restore, the throughput dropped to almost zero
for the first 12 seconds of the restore. It does not return to steady state
performance until 20 seconds after execution begins. For working
set restore, the throughput returns to steady state performance
within 3 seconds. However, the graph does not include the time
required to prefetch the working set, which must be taken into
account to compare with lazy restore. Working set restore estimates
the working set to be 192MB, which takes 6 seconds to prefetch.
Altogether, working set restore returns the application to steady state
performance in 9 seconds. In comparison, eagerly restoring the VM
would have taken 32 seconds, so both lazy and working set restore
are faster than eager in this case, but working set restore is the fastest
of the three.

Figure 5 shows the number of frames rendered by MPlayer
during a restore. The VM was saved after 410 seconds of video
playback. Performance drops for both restore methods simply
because the VM stops in the middle of playback. With working set
restore, playback recovers after 3 seconds and MPlayer returns to
rendering 30 fps. With lazy restore, MPlayer is completely stopped
for the first 20 seconds and only recovers after 35 seconds. Like
the previous experiment, these graphs do not include the time
to prefetch the working set. The working set size of MPlayer is
fairly small because it mostly consists of the video buffer cache;
working set restore only prefetched 41 MB of memory, requiring 1
second of prefetching. In this experiment, 1 second of prefetching
saved 32 seconds of performance degradation after the VM starts,
clearly showing the benefit of working set restore for workloads
with a small working set. When we account for both prefetching
time and performance degradation, working set restore takes 4
seconds to restore MPlayer back to steady state performance. Using
eager restore, MPlayer would have resumed with no performance
degradation after 32 seconds. In this case, lazy restore performed
worse than eager restore, but working set restore offers much better
performance than either eager or lazy restore.

Lazy Restore

10000
8000
6000
4000
2000

0 T T T T
0 20 40 60

Elapsed Time (seconds)

17
=3
3

=

Working Set Restore

O T T T T
0 20 40 60

Elapsed Time (seconds)

Figure 4. Comparison of instantaneous throughput of SPECjbb
during a lazy restore and working set restore. The BOPS drops below
steady state performance for the first 20 seconds of the lazy restore,
but only for the first 3 seconds of working set restore. Working
set restore takes an additional 6 seconds to prefetch the working
set, which is 192 MB, so altogether working set restore improves
performance by 11 seconds over lazy restore. Eager restore takes 32
seconds, so working set restore reduces restore time by 23 seconds
when compared to eager restore.

5.3.4 TTR Evaluation

Next, we’ll discuss the time-to-responsiveness of MPlayer and
SPECjbb and how TTR correlates with the application performance
shown in the last section. Figure 6 shows TTR for the SPECjbb
application and Figure 7 shows TTR for the MPlayer application.
Unlike the previous section, both graphs in this section begin when
Workstation starts and include the time to restore the device state
and prefetch the working set.

It is easy to see the advantage of working set restore from the
TTR graph. Comparing Figure 6 and Figure 4 from the previous
section shows that a minimum utilization for SPECjbb of 70%
is required. For the SPECjbb workload, it takes lazy restore 22.8
seconds to gain 70% minimum utilization, which is close to the 20
seconds that it takes SPECjbb to return to steady state performance
during a lazy restore. In contrast, working set restore achieves this
level of minimum utilization 9.8 seconds after starting. Working

Lazy Restore

w &
(=2 -]

o O

20 40 60
Elapnsed Time (seconds)

Frames per second
o
(=)

Working Set Restore

Frames per second
o3
(=)

0 T T T T
0 20 40 60

Elapsed Time (seconds)

Figure 5. Comparison of the MPlayer frame rate during a lazy
restore and a working set restore. During the lazy restore, the frame
rate is impacted for 35 seconds. Working set restore only takes
1 second to restore the 41 MB working set. Using working set
restore, the frame rate only slows for 3 seconds, giving a 31 second
improvement in overall performance.

—— Lazy
--- Working Set Restore

Min Utilization

0.0 T T T
50 100 150

Elapsed Time (seconds)

Figure 6. TTR for the SPECjbb application using lazy restore and
working set restore. With working set restore, the TTR reaches 70%
in 9.8 seconds seconds, including 6 seconds of prefetching. With
lazy restore, there is no prefetching, but the TTR does not reach 70%
until 22.8 seconds after the VM starts. Comparing with Figure 4
shows that a required minimum utilization of 70% correlates well
with performance impact on throughput for SPECjbb.

set restore impacts performance for 9 seconds total in the previous
experiment, including the time to prefetch the working set.

Figure 7 shows the time-to-responsiveness for the MPlayer
application. Again, this graph starts from when the hypervisor starts,
so it includes the time to restore the device state and prefetch the
working set. The MPlayer VM has a 128 MB SVGA frame buffer.
The SVGA frame buffer is part of the virtual graphics driver, so it
must be restored along with the other devices before the VM starts.
This adds around 5 seconds to the time until the VM starts for both
lazy and working set restore. Altogether, the total time until the VM
starts is 7.4 seconds for lazy restore and 9.3 seconds for working set
restore.

Comparing the TTR with Figure 5 shows that MPlayer requires a
minimum utilization of around 80%. Lazy restore achieves this level
of utilization after 43.3 seconds, which is 35.9 seconds after the VM

1.04 e
|------|’
i
0.8 P it REE T 1
g |
2 H
T 0.6 | .
g i — Lazy
= ! --- Working Set Restore
= 04+
= !
= !
024 |
—_
0.0 T T T
(50 100 150

Elansed Time (seconds)

Figure 7. TTR for the MPlayer application using lazy restore and
working set restore. By looking at Figure 5, MPlayer seems to
require a min utilization of around 80% to maintain its base frame
rate. The TTR for MPlayer does not correlate as well with the
application metric as SPECjbb.

starts. Working set restore gains a minimum utilization of 80% after
11 seconds, which is 1.7 seconds after the VM starts. The TTR for
MPlayer does not correlate as well with our chosen performance
metric of frames per second as SPECjbb. We speculate that there
is less of a direct correlation between TTR and FPS because of
buffer effects caused by the frame buffer and MPlayer adjusting its
playback in real-time in response to performance degradation.

Using these two example workloads, we have shown how TTR
might be used to compare the performance of restore techniques. The
window and minimum utilization can be determined experimentally
by using an end-to-end metric like throughput, but it does not always
correlate directly to end-to-end performance. Nevertheless, TTR
better reflects user experience than either total time to restore or
total time until the VM starts. In the following sections, we use TTR
to compare several aspects of working set restore.

5.4 Working Set Estimation

This section compares the accuracy of the two working set estimators
that we implemented and analyzes the impact of imperfect working
set estimators on working set restore.

5.4.1 Estimator Comparison

We compared the accuracy of the access-bit estimator and the
memory tracing estimator for different workloads by taking several
measurements during the restore. We measured the number of
prefetched pages to find the size of the estimated working set. We
counted the number of accesses to prefetched pages and unrestored
pages after the VM starts. These two numbers give some idea of
the accuracy of the working set estimator. The number of pages
accessed that were prefetched is the number of pages where the
restore avoided demand-paging. The number of pages accessed
that were unrestored represents the number of pages restored on-
demand. These two numbers also give some sense of whether each
working set estimator overestimates, underestimates or completely
misses the working set. Table 2 gives a comparison for the MPlayer
benchmark, and Table 3 gives a comparison of the two estimators
for the SPECjbb benchmark.

Since MPlayer has a well-defined active working set, both
estimators do well. The memory trace estimator does slightly better
by avoiding the most accesses to unrestored memory, but the access-
bit estimator still reduces accesses by 80%, while only prefetching
4% of memory. While MPlayer is very predictable, the working
set of SPECjbb is more difficult to predict for a simple working
set estimator. It is larger and not accessed as consistently as the
MPlayer frame buffer. It is clear that the access-bit estimator does

Table 2. Measure of the effectiveness of the working set estimator
for MPlayer in reducing demand-paging. Both access-bit scanning
and trace-based working set estimation reduce the number of
accesses to unrestored memory, reducing performance degradation.

Prefetched Avoided On-demand
MPlayer
Pages Accesses Pages
Lazy 0 0 1,548
A-bit 10,114 8,617 343
Trace 10,113 10,084 84
Eager 262,144 0 0

Table 3. Measure of effectiveness of working set estimators for
SPEC;jbb in reducing demand-paging. The access-bit working set
estimator does not perform as well as the memory trace estimator for
SPECjbb. SPEC;jbb is a deterministic workload, so memory tracing
is effective, reducing the number of on-demand pages by more than
97%.

SPECjbb Prfl:)fetched Avoided On-demand
ages Accesses Pages
Lazy 0 0 1,623
A-bit 83,471 30,501 442
Trace 47,082 47,082 47
Eager 262,144 0 0

not work as well. Working set restore with the access-bit estimator
prefetches almost twice as much memory as working set restore with
the memory trace estimator (83,471 vs. 47,082) but uses less of it
(30,501 vs. 47,082). However, SPECjbb is a deterministic workload,
so memory tracing works very well, reducing the number of accesses
to unrestored memory by more than 97%. Working set restore using
the memory tracing estimator only prefetches 193 MB, which is
close to the size that we estimated the working set of SPECjbb to
be.

5.4.2 Estimator Accuracy

The performance of working set restore is dependent on the accuracy
of the working set estimator. With an oracle, working set restore
would be optimal, but no estimation techniques are perfect. The goal
of this experiment was to measure the decrease in performance of
working set restore as the accuracy of the working set estimator de-
creases. We tested this by restoring the same saved VM several times
with a fraction of the working set retained. We randomly dropped
a percentage of the pages in the working set for each experiment.
Since the pages removed from the working set are randomly chosen,
there is some variation in the experiments. We did not test the per-
formance of a working set estimator that overestimates the working
set because overestimating does not lead to performance degrada-
tion after the VM starts, it simply increases the time to prefetch the
working set. If our working set estimators are very accurate and only
include the minimal set of pages accessed by the VM after staring in
the working set, then the performance of working set restore should
drop as soon as some of the working set is not prefetched.

Figure 8 shows the TTR for different percentages of the working
set dropped and the TTR for lazy restore for the MPlayer experiment.
The more pages missing from the working set estimate, the more
pages must be faulted in on-demand. When we drop even 5% of the
working set, the performance begins to look like lazy restore. This
sharp decrease reflects the cost of paging content from a relatively
slow medium like a disk. This decrease also reflects well on our
original working set estimate because it shows that our original
working set was already the minimal set of pages that must be
prefetched to guarantee good performance after the VM starts.

0.8 ;
1

E i —— Lazy
E 0.6 ! --- 100%
g T 95%
2 044 | - 0%
= ; —=50%
= :

024)}]

0.0 T T T

50 100 150

Elapsed Time (seconds)

Figure 8. TTR for lazy restore and working set restore with partial
working sets. We started with the memory trace estimator, which
only missed 84 pages of the working set (see Table 2). We retain a
random portion of the working set for each percentage line. Note that
the performance drops quickly, meaning that the original working set
was already the minimum set of pages that needed to be prefetched
to guarantee good performance.

1.0+

0.8
=
S
® 0.64 — Mem?20
E --- Mem40
s 0 e e Mem60
= 04+ --—- Mem80
=

0.2+

7
0.0 - T
0 100 150

Elapsed Time (seconds)

Figure 9. TTR for lazy restore of varying working set sizes. The
time to reach 80% minimum utilization degrades quickly with lazy
restore. There is more disk thrashing as the size of the working
set increases because the microbenchmark is randomly accessing a
larger region of memory.

5.5 Working Set Size Microbenchmark

This benchmark artificially generates working sets of differing sizes
by allocating a percentage of guest memory, then touching pages at
random. The pages are chosen completely randomly, so there is no
guarantee that all pages are touched or that all pages are touched
once before being touched again. This benchmark runs on top of the
basic RHEL VM presented in Section 5.2.

As the working set size becomes a larger fraction of total memory,
the performance of both lazy restore and working set restore
will decrease. Lazy restore has increased performance degradation
because there will be more accesses to unrestored memory, so the
VM will be unusable for longer. If the VM is actively using most of
its memory then the working set will be almost all of the memory.
Working set restore will have to prefetch most of memory, and its
performance will approach the performance of eager restore.

Figure 9 shows the performance of lazy restore for a working set
that occupies 20% to 80% of memory. As expected, the performance
degrades as the VM accesses more memory actively because the
VM will touch more unrestored memory during the restore. The
performance for all sizes of working sets is worse than eager restore,
which takes around 32 seconds, showing that lazy restore is only the
better choice if the VM is actively using very little of its memory.

1.0+ Fommm—---
e I I
1
R S H
0.8+ H
=
S
E 0.6 ; —— Mem20
= H ----Mem40
S|] e P Mem60
g 041 P e Mem80
-
0.2 i
0.0 - : d :

30 100 150
Elapsed Time (seconds)

Figure 10. TTR for working set restore of varying working set
sizes. Because the microbenchmark is random, the working set
estimation techniques are not as successful, but working set restore
still performs better than lazy restore for all memory sizes.

Figure 10 shows the performance with working set restore. The
performance of working set restore also suffers as the size of the
working set increases. As the benchmark is accessing memory
randomly, it is difficult for the working set estimator to capture
all of the working set. As the size of the working set grows, it
becomes more likely that the working set estimator will miss part
of the working set because it was just not accessed before the
checkpoint was taken. However, working set restore still offers
better performance than lazy restore for all sizes of working sets.
For a minimum utilization of 60%, working set restore does well,
staying below 35 seconds for all working set sizes except for when
the working set is 80% of the memory size.

5.6 Working Set Restore Overhead

Using working set estimation for working set restore imposes an
overhead on the VM. The amount of performance impact from
working set estimation depends on the estimator and the application.
These experiments give the overhead for our two working set
estimators for our benchmark applications, MPlayer and SPECjbb.

The overhead of the access-bit scanning estimator is ongoing
because the scanning process always runs while the VM is running.
However, the overhead is small because we are only scanning 4,096
pages every second. We ran each VM for 10 mins and measured
the number of cycles for each scan. The overhead varies slightly
for each workload depending on how much memory the application
is using and how much memory is mapped in the guest OS. The
access-bit scanner is optimized to first scan page directory entries
and not scan the page table entries if the page directory entry does
not exist or has not been accessed.

Table 4 shows the average number of cycles required to scan the
access-bits for 4,096 pages each second and the percentage overhead
based on the total number of cycles between scans. For SPECjbb,
the access-bit scanning process takes 76,040 cycles on average every
second to scan 4,096 pages. This translates to less than a fifth of
a percent of overhead for the SPECjbb VM. The MPlayer VM is
using less memory, so the access-bit scanner spends even less time
scanning page tables on average, only 57,372 cycles on average.
This gives only slightly more than a tenth of a percent of overhead
for the MPlayer VM.

The memory tracing estimator only imposes an overhead on the
VM while the VM is being checkpointed. The estimator requires
read traces in addition to write traces and the traces can only be
removed once the page has been added to the working set, so
more traces are triggered. The overhead imposed by the additional
traces depends on the workload because some workloads read from
memory more than others.

Table 4. Average number of cycles spent scanning access-bits
each second and the estimated percentage overhead for access-
bit scanning. The overhead for the access-bit scanning estimator
is ongoing because it must constantly scan pages to estimate the
working set, but the amount of overhead is small.

| Avg. Cycles % Overhead
SPEC;jbb 76,040 .0016%
MPlayer 57,372 .0012%

Each trace causes a page fault, so the VM must pause while the
hypervisor handles the trace. It is somewhat difficult to measure
the overhead of a page fault because the switch between the VM
and the hypervisor pollutes caches as well as using cycles. This
experiment attempts to show both the end-to-end and low level
effects of additional traces. We measured the increase in the total
time to checkpoint as well as the total increase in number of traces
triggered. Table 5 shows the results for the SPECjbb workload and
Table 6 shows the results for the MPlayer workload.

For SPEC;jbb, read traces add 30.9% to the number of traces
triggered over the lazy checkpoint period, so SPECjbb probably
reads and writes many of the same pages. In contrast, we see a 76.8%
increase in triggered traces with MPlayer, showing that MPlayer
reads more pages that it does not write than SPECjbb. However, an
increase in traces does not lead to a significant change in the time
to save the VM for either workload. Despite working set restore
spending 7.5 seconds copying the working set for SPECjbb, the
total time to save increases by 7 seconds. The increase in triggered
traces actually decreases the time to lazily save the VM’s memory
slightly. The lazy save proceeds faster because more pages are being
saved when the VM accesses them and fewer are being saved by
the slow-running background thread. Similarly, the total time to
checkpoint the VM increases by 0.9 seconds for MPlayer, but 5.9
seconds are spent copying the working set. There is also an increase
in the total time to checkpoint or suspend a VM for the access-bit
scanning estimator, but it simply adds to the total time based on the
size of the estimated working set.

Table 5. Overhead of memory tracing for SPECjbb. With the
addition of read traces, the number of traces triggered during
the checkpointing process increases by 30.9%. The total time to
checkpoint the VM increased by 7 seconds, with 7.5 seconds spent
copying the working set. The slight decrease in the time to lazily
save is caused by more pages being saved when the VM accesses
them and fewer pages being saved by the slow-running background
thread.

SPECjbb | Traces Triggered Time to Save
Baseline 42,849 91.7s
Working Set Restore 56,087 98.7s

Table 6. Overhead of memory tracing for MPlayer. There was a
76.8% increase in the number of traces triggered with working set
restore. The total time to save the VM increased by 0.9 seconds,
with 5.9 seconds spent copying the working set.

MPlayer ‘ Traces Triggered Time to Save
Baseline 5,811 101.7 s
Working Set Restore 10,272 102.6 s

6. Related Work

The time-to-responsiveness performance metric for restoring saved
VMs and the working set restore technique build on related work

from several different areas of research. We built on work from
the HCI and garbage collection communities for evaluating the
responsiveness of a VM and work from the OS community on
techniques for working set estimation and prefetching.

6.1 Restore and Prefetching Techniques

There is not much previous research in improving the performance of
restoring saved VMs, but one related area where there has been more
work is improving the performance of restarting an operating system
from hibernation. Operating systems cannot take advantage of lazy
fetching of memory as easily as the hypervisor because the operating
system would have to fetch its own pages lazily, which would be
much more complex. Accordingly, most operating systems eagerly
fetch saved memory before restarting. Both Linux and Windows
use compression to speed up the process of reading saved data from
disk [1, 15]. We found that compression is not very effective for

saved VMs, unless there is a lot of unused memory that is zeroed.

Unless the guest was recently booted, there is generally not much
unused memory, as the guest OS will always try to use any unused
memory for buffer cache.

Unlike a hypervisor, the operating system does not have to save
or restore all of memory; it can dump memory that it knows is not
necessary to save, such as the buffer cache. Dumping the buffer
cache can hurt performance after the OS restarts, but it also saves a
lot of time when hibernating and restarting the OS. In contrast, the
hypervisor cannot throw away any of the VM’s memory because
it does not know what memory the VM is using. We could ask
the guest to drop its buffer cache, which only requires a single
command in Linux for example, but we would have to paravirtualize
the guest to figure out which pages are part of the buffer cache
because dropping the buffer cache does not zero those pages. Using
working set estimation is a better solution because it gives us an idea
of the active memory of the VM without requiring modifications to
the guest.

Working set prefetching has been explored for applications.

Windows uses a system called SuperFetch [11] that prefetches

frequently used files and binaries for commonly used applications.

SuperFetch also traces the boot process to predict what files will be
needed for the next boot and reorganizes files on disk in the order
that they will be needed during the boot process. Some of the ideas
are similar to working set restore (i.e. reorganizing data on disk
based on when it is needed), but Windows has more information
about accesses and dependencies. In contrast, we treat the VM as
a black box, so we assume that all accesses are unrelated. A single
action in the operating system can look like a series of random
memory accesses as different levels of the operating system are
accessed, such as the application or the file system stack. Working
set estimation works well with this kind of view because it predicts
the set of active memory using only memory accesses and does not
require additional information.

VM migration faces some of the same problems as restoring a
saved VM. In particular, the pull model of migration, where the
VM starts at the destination and lazily pulls memory over from
the source, is similar in implementation to a lazy restore. One key
difference between migration and restore is that the memory comes
over the network and is in memory on the source. So, while there
is a latency for fetching a page during lazy migration, there is no
penalty for random access versus linear access.

Similar to our findings on the performance degradation of lazy

restore, the latency of the network makes lazy migration difficult.

Sapuntzakis[19] and Clark[7] both dismiss lazy migration due to
the performance overhead. Hines[10] propose a scheme similar to
working set restore for migration, although they choose all pages
that are not dirty, rather than using working set estimation. They
propose a “bubbling scheme” for the background restore process

where the background thread chooses pages located around the
most recent access of unrestored memory. Such a bubbling scheme
is not really practical for pulling memory off a mechanical disk
where there is a penalty for random access. Recently, the SnowFlock
system [16] for VMfork, where a running VM is copied and started
on another host, used lazy restore of memory. They use a purely
lazy scheme, but paravirtualize the guest to avoid restoring pages
that will only be re-allocated. They argue that with this optimization,
the performance degradation is minimal because newly forked VMs
generally allocate new memory and do not request much memory
from the parent VM. We chose not to paravirtualize because running
unmodified guests is more general and we cannot expect the VM to
allocate new memory when restoring from a suspend or checkpoint.

6.2 Performance Metrics

The HCI community has defined what constitutes good respon-
siveness for an application. Miller [17] set a general standard for
response time more than 30 years ago. A response time of less than
100 milliseconds appears instantaneous to the user, a response time
of greater than 1 second requires user feedback, and a response
time of greater than 10 seconds will cause the user’s attention to
wander. Using this standard, we can calculate a rough upper bound
for how many times the restore process can go to disk and fetch
a page before the VM appears to lag. For each user action, there
can only be 10 accesses to unrestored memory. This limit gives us
insight into why lazy restore causes such noticeable performance
degradation. We found there to be more than a thousand accesses
to unrestored memory during a lazy restore, so each user action
causes tens or hundreds of disk accesses, causing the VM to slow
down, sometimes so much that the user would consider the VM to
be unusable during the entire restore process.

In order to compare the performance degradation of various
restore schemes, we introduced the time-to-responsiveness metric.
TTR quantifies acceptable overhead for a particular service: the
restoring of a VM. It answers the question of when the VM is
suitably responsive, or alternatively, when it is no longer overly
taxed by the process of being restored. Other services have also
investigated how one reasons about and reports their overhead. On-
going services such as garbage-collection [14] have examined the
concept of minimum mutator utilization [6] or MMU: given an
appropriate time interval or window, it is the least amount of time not
consumed by collection activity and so available to the application.
Unlike the MMU, time-to-responsiveness differs in that the restoring
of a VM is not an on-going activity and we are interested in knowing
at which point in time its overhead is sufficiently small.

6.3 Working Set Estimation

The idea of estimating working sets attempts to capture an important
notion about locality of accesses [9]. Uses proposed by Denning [9]
include not only determining what memory to page out but also
what memory to page in. In one sense, restoring a VM is an extreme
version of this where the state capturing the working-set for the VM
must persist with the saved state. Unlike the working set described
by Denning, our working set is simply defined by the set of pages
accessed by the VM during a restore, since those are the pages that
cause disk accesses during the restore process.

There is much work on improved methods for identifying pages
in a working set [5, 12, 13, 18]. This previous work extends the
CLOCK algorithm [8] to be resilient to incidental or transient
accesses such as those that occur when memory is scanned. Our
working set estimators are geared towards predicting accesses during
a very specific period of time, which makes them simpler than more
general working set estimators. For example, our estimators do not
need to ignore transient accesses, since even transient accesses to
unrestored memory cause performance degradation. In addition,

the rate of our access-bit scanner can be set by the speed of the
background restore process and our memory trace estimator only
captures accesses to memory during the checkpointing process.

7. Conclusion

We examined existing metrics for comparing techniques for restor-
ing VMs and found that they do not reflect what is most important
to the user—when the VM and its applications return to normal
performance. We proposed both a better metric and a better re-
store technique for user experience. Our new time-to-responsiveness
metric takes into account the time until the VM starts and the per-
formance degradation of the VM after it starts. Working set restore
starts the VM as soon as possible, while minimizing performance
degradation after the VM starts. Working set restore accomplishes
this by estimating the working set of the VM before the check-
point, saving the working set along with the checkpointed state and
prefetching it before starting the VM. We showed that working set
restore works well even with a simple working set estimator that
scans access-bits. We introduced a new working set estimator that
uses memory tracing during lazy checkpointing to more accurately
capture the VM’s working set. We found that with the memory trac-
ing estimator, working set restore can anticipate 99% of the VM’s
memory accesses after starting, avoiding most of the performance
degradation of lazy restore with just a few seconds of prefetching.

Working set restore is a predictive technique, so it works best
with predictable workloads. The behavior of the VM does not have
to be exactly the same before and after the checkpoint, but the VM
must use the same set of active memory after it restarts as it did
before it was saved. We found that with a random workload working
set restore does better than lazy restore, but slightly worse than
eager restore. Improving the performance of lazy restore for an
unpredictable workload is extremely difficult. Using the guidelines
from the HCI community, the VM and its applications must respond
to any user action within 100 milliseconds, limiting the VM to
around 10 accesses to unrestored memory. Without the ability to
use previous memory accesses to predict future accesses, it would
be extremely difficult to keep the number of accesses to unrestored
memory under that limit and keep the VM responsive. If the VM’s
workload is truly random, then the technique that is optimal for user
experience is not using lazy restore at all, but eagerly restoring the
VM’s memory image. Fortunately, many applications are predictable
because they actively use a limited set of memory pages allocated
to them by the OS, so predictive techniques like working set restore
can still offer significant performance improvements.

Acknowledgments

Thanks to Dong Ye for modifications to MPlayer and to Lenin
Singaravelu for modifications to SPECjbb*~2005. Thanks to Kevin
Christopher and Jesse Pool for many discussions of ideas and
experiences about checkpointing and restore. Thanks to Dan Ports
and Karen Zee for their feedback on the many drafts of this paper.

References
[1] pswsusp. http://suspend.sourceforge.net/.

[2] AMDG64 virtualization codenamed “pacifica” technology: Secure vir-
tual machine architecture reference manual, May 2005. http://
enterprise.amd.com/downloadables/Pacifica_Spec.pdf.

[3] D. F. Bacon, P. Cheng, and V. Rajan. A real-time garbage collector
with low overhead and consistent utilization. In Proc. POPL ’03, New
Orleans, LA, USA, Jan. 2003.

[4] D. FE. Bacon, P. Cheng, and V. Rajan. The Metronome, a simpler
approach to garbage collection in real-time systems. In Proc. OTM
2003 Workshops, 2003.

[5] S. Bansal and D. S. Modha. CAR: Clock with adaptive replacement.
In Proc. FAST *04, 2004.

[6] G. E. Blelloch and P. Cheng. On bounding time and space for
multiprocessor garbage collection. In Proc. PLDI 99, Atlanta, GA,
USA, May 1999.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In Proc. NSDI
’05, 2005.

[8] F. J. Corbato. A paging experiment with the Multics system. Technical
report, MIT Project MAC, May 1969.

[9] P.J. Denning. The working set model for program behaviour. Commun.
ACM, 11(5), 1968.

[10] M. R. Hines and K. Gopalan. Post-copy based live virtual machine
migration using adaptive pre-paging and dynamic self-ballooning. In
Proc. VEE 2009, Washington, DC, USA, 2009.

[11] T. Holwerda. SuperFetch: How it works & myths, May
2009. http://www.osnews.com/story/21471/SuperFetch_
How_it_Works_Myths.

[12] S.Jiang and X. Zhang. LIRS: an efficient low inter-reference recency
set replacement policy to improve buffer cache performance. In Proc.
SIGMETRICS 02, Marina del Rey, California, USA, 2002.

[13] S.Jiang, F. Chen, and X. Zhang. CLOCK-Pro: An effective improve-
ment of the CLOCK replacement. In Proc. USENIX ’05, 2005.

[14] R. E. Jones. Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. Wiley, Chichester, July 1996. URL http://
www.cs.ukc.ac.uk/people/staff/rej/gcbook/gcbook. html.

[15] kernel-enhancements-xp. Kernel enhancements for Windows XP, jan
2003. http://www.microsoft.com/whdc/archive/XP_kernel.
mspx.

[16] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.
Rumble, E. de Lara, M. Brudno, and M. Satyanarayanan. SnowFlock:
rapid virtual machine cloning for cloud computing. In Proc. Eurosys
’09, Nuremberg, Germany, 2009.

[17] R. B. Miller. Response time in man-computer conversational trans-
actions. In Proceedings of the fall joint computer conference, part I,
AFIPS 68 (Fall, part I), pages 267-277, New York, NY, USA, 1968.
ACM.

[18] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page
replacement algorithm for database disk buffering. In P. Buneman
and S. Jajodia, editors, Proc. SIGMOD ’93, 1993.

[19] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and
M. Rosenblum. Optimizing the migration of virtual computers.
SIGOPS Operating Systems Review, 36, 2002.

[20] Seagate. Product Manual. Barracuda 7200.11 Serial ATA.
http://wuw.seagate.com/staticfiles/support/disc/
manuals/desktop/Barracuda7200.11/100452348g.pdf, Jan.
20009.

[21] Standard Performance Evaluation Corporation. SPECjbb2005 User’s
Guide. http://www.spec.org/jbb2005/docs/UserGuide.
html, April 2006.

[22] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualizing I/O
devices on VMware Workstation’s hosted virtual machine monitor.
In Proceedings of the 2001 USENIX Annual Technical Conference,
Boston, MA, USA, June 2001.

[23] N. Tolia, D. G. Andersen, and M. Satyanarayanan. Quantifying
interactive user experience on thin clients. IEEE Computer, 39(3),
Mar. 2006.

[24] VMware. Timekeeping in VMware virtual machines. http://www.
vmware.com/vmtn/resources/238, Aug. 2008.

