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Abstract

Internet-based services that span multiple sites will likely
benefit from a wide-area distributed storage system to
help the sites interact and gain fault tolerance. This pa-
per presents such a storage system, WheelFS, in the form
of a distributed file system with a familiar POSIX inter-
face. WheelFS operates as a cooperating set of servers
spread over a wide-area network, and thus must cope with
server and network failures as well as high latency and
restricted bandwidth. A primary focus of WheelFS’s de-
sign is resolving the tension between the need for sites to
see each other’s updates and the need for sites to be able
to operate independently in the face of failures. WheelFS
allows applications to chose how to cope with wide-area
network behavior using semantic cues, which allow appli-
cation control over consistency, failure handling, and file
and replica placement.

An implementation of WheelFS is deployed on Planet-
Lab, Emulab, and on a 20-node private testbed. An eval-
uation with three applications (a CDN, an email service
and large file distribution) shows that WheelFS provides
the failure behavior that the applications need, is easy to
use as part of a distributed application, and provides com-
petitive performance.

1 Introduction

There is a growing set of Internet-based services that are
too big to run conveniently on a single data center; exam-
ples include web sites for e-mail, video and image hosting,
and social networking. Splitting such services over multi-
ple data centers offers potential for improvements beyond
just partitioning the load: cooperation among sites, fault
tolerance via geographically diverse replication, and re-
duction of bandwidth cost and latency by locating data
near likely consumers. Once an organization has dis-
tributed data centers available, it is desirable to be able to
re-use the centers for new services easily. Single data cen-
ters often have an analogous set of problems when clusters
of servers read and write data and need to see each other’s
changes; general-purpose shared storage systems have ad-
dressed these needs successfully [1-4, 13,20, 32]. Could
a shared storage system help distribute services over the
wide area? This paper explores the feasibility of using a
file system designed specifically to support wide-area dis-
tributed services.
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A wide-area storage system faces a tension between
sharing and site independence. The system must support
sharing: if one site stores some data, other sites may need
to be able to find and read that data. On the other hand,
sharing can be dangerous; one site should be able to make
progress even if other sites are unavailable, since a pri-
mary goal of multi-site operation is fault tolerance. The
storage system’s consistency model affects the sharing/in-
dependence tradeoff: the stronger forms of consistency
usually require serialization by a designated server, whose
unreliability may force delays at other sites [21]. The stor-
age system’s data and meta-data placement decisions also
affect site independence, since data placed at a distant site
may be slow to fetch or unavailable.

The wide-area file system introduced in this paper,
WheelFS, allows application control over the sharing/in-
dependence tradeoff: the application can control file sys-
tem behavior such as consistency, failure handling, and
replica placement. The controls allow application-specific
tradeoffs between performance and consistency, in the
style of PRACTI [10] and Padre [11], but in the context
of a file system with a POSIX interface.

A central challenge in the design of WheelFS is decid-
ing what behavior the file system should provide by de-
fault, and how to let developers specify non-default be-
havior in a simple way. WheelFS resolves these chal-
lenges as follows. By default, WheelFS provides close-
to-open consistency and implements a write-locally data
placement policy so that application output can be written
at disk data rates. Applications can adjust this default be-
havior with semantic cues, which specify placement and
consistency policies, among other categories. Our hypoth-
esis is that the number of sensible policies for placement,
consistency, etc. is small and can be expressed with a
small number of cues. WheelFS allows the cues to be ex-
pressed in the pathname, and thus no changes are neces-
sary to the standard POSIX interface. The advantage of
this solution is that developers can re-use existing code
with only small modifications, often just to configurable
file names.

Much of the justification for WheelFS providing a file
system interface is pragmatic: developers will value the
convenience and familiarity of a file system interface.
WheelFS may not provide the semantics and performance
that some applications require; such applications may use
more sophisticated storage systems, perhaps after a proto-



typing stage on WheelFS. At the moment, however, there
are few options for wide-area storage; one possibility is
DHTs [16,28,29,37]. We hope that other storage systems
can take advantage of our experience in the choice of cues
to offer.

A prototype of WheelFS runs on FreeBSD, Linux, and
MacOS. The client implementation runs as a user-level
file system, using FUSE [19] to allow applications to use
standard system calls. We have deployed WheelFS on
PlanetLab, on an emulated wide-area network on Emu-
lab, and on a set of 20 dedicated nodes at three Internet
sites.

We demonstrate WheelFS’s usefulness with several ap-
plications: a caching CDN, a distributed email service,
and a few smaller applications, including a PlanetLab
measurement application. All were easy to build by re-
using existing software components, with WheelFS for
storage instead of a local file system. The extent to which
we could re-use existing non-distributed software in these
applications came as a surprise [39], but it illustrates
the value of a file system interface. Performance mea-
surements show that these applications behave well with
WheelFS, even when there are failures, and that perfor-
mance is competitive with other approaches. Cues play
a large role in allowing the applications to achieve good
failure behavior and good performance.

The main contributions of this paper are as follows: a
new file system that assists in construction of wide-area
distributed applications; a set of cues that allows applica-
tions to control the file system’s consistency and availabil-
ity tradeoffs; and a demonstration that wide-area applica-
tions can achieve good performance and failure behavior
by using WheelFS.

The rest of the paper is organized as follows. Sec-
tion 2 gives the general system model for WheelFS. Sec-
tion 3 summarizes the challenges that wide-area storage
applications face and our general approach to handling
them. Section 4 presents WheelFS’s core design, while
Section 5 presents the cues that allow applications to
customize the behavior of WheelFS. Section 6 describes
some example applications, while Section 7 outlines the
implementation of WheelFS. Section 8 measures the per-
formance of the WheelFS applications. Section 9 dis-
cusses related work, and Section 10 concludes.

2 System Model

We consider distributed applications that run on a collec-
tion of sites distributed over the wide-area Internet. All
nodes running WheelFS are either managed by a single
administrative entity or multiple administrative entities
that explicitly cooperate with each other. In such a de-
ployment environment, nodes are trustworthy, as opposed
to a peer-to-peer environment where nodes could be in-
tentionally malicious. As such, the security requirement

of WheelFS is to provide proper access control instead of
guarding against data corruption and loss due to malicious
servers [9,24]. Because nodes in our deployment environ-
ment are well-managed, we also expect them to have high
overall uptimes despite occasional failures. Many exist-
ing distributed infrastructures fit our deployment scenario
such as wide-area testbeds (e.g., PlanetLab and RON), a
collection of data centers spread across the globe (e.g.,
Amazon’s EC2), and federated resources such as Grids.

3 Challenges and Approach

There are many benefits to a wide-area distributed storage
system. It can act as a repository of data that multiple sites
read. It can serve as a rendezvous point or communication
channel among service components running at different
sites, as one site writes data that another site later needs to
read. It can increase fault tolerance by replicating data at
geographically-separated sites. Finally, it can help perfor-
mance by placing data replicas near the clients most likely
to use the data. This section presents a case study of some
of the difficulties in providing such wide-area storage, and
outlines WheelFS’s approach.

3.1 Wide-area challenges

Building a wide-area application requires significant pro-
gramming effort. What are the sources of this complex-
ity? We use the popular CoralCDN [18] application as a
case study. CoralCDN consists of hundreds of Web prox-
ies distributed across the Internet that serve Web pages
from a shared cache. The system’s goal is to reduce the
origin Web server’s load as well as browser fetch la-
tency [18,42,45]. When a browser sends a request to one
of the proxies, the proxy looks for the requested Web page
in the shared cache; if it is there and has not expired, the
proxy serves the request from the cache. Otherwise the
proxy fetches the page from the origin server, stores it in
the shared cache, and serves it to the browser.

Roughly half of CoralCDN’s 34,000 lines of code im-
plements its distributed sloppy hash table, a storage mod-
ule that allows nodes to find cached Web pages among all
proxies. Most of the remaining code implements a cus-
tom web proxy to interface with CoralCDN’s distributed
hash table. What wide-area challenges does the Coral-
CDN storage module face?

* High latency. Delays to servers that are distant or
on heavily-loaded links may be high. CoralCDN re-
duces delay by reading the cached copy that is near-
est in the network. In order to find nearby nodes,
CoralCDN groups nodes into clusters according to
their pair-wise latencies.

* Low bandwidth. Since wide-area network capacity
is limited, applications should avoid moving large



amounts of data long distances. Each CoralCDN
proxy stores newly-fetched Web pages on its local
disk, and moves data to remote proxies only when
clients need it.

e Transient failures. The wide-area network is prone
to transient routing, link, and host failures. Applica-
tions can cope by keeping multiple copies of their
data. For read/write data this risks inconsistency
among the copies, and different applications have
different preferences in the tradeoff between avail-
ability and consistency. CoralCDN does not require
the cache to yield the latest copy of a page because it
can use saved HTTP headers to check freshness.

3.2 Our approach

WheelFS faces the challenges outlined above while pur-
suing its main goals. These goals are: 1) to provide dis-
tributed storage to multi-site applications, 2) to allow ap-
plications to choose a tradeoff between consistency and
failure-independence, and 3) to provide a programmer-
friendly traditional POSIX file system interface. The hope
is that a file system will simplify programming because
programmers are used to its API; furthermore, it may al-
low for more code re-use, enabling application writers to
focus on the core of their application while they adopt ex-
isting components designed for local file systems (Web
proxy, IMAP and SMTP servers, etc.).

WheelFS provides a location-independent hierarchy of
directories and files with a POSIX file system inter-
face. WheelFS provides knobs for an application to alter
WheelFS’s data placement behavior and its consistency
and availability tradeoff. These knobs take the form of se-
mantic cues embedded in pathnames. For example, read-
ing a file named /wfs/cache/.EventualConsistency/foo
allows WheelFS to produce out-of-date data if that would
avoid a long delay while trying to talk to an unresponsive
server. Use of WheelFS’s cues often requires only small
changes to software that already uses files for storage.

Using WheelFS, we can build a distributed Web cache
similar to CoralCDN quickly by re-using existing soft-
ware. The idea is to run an existing single-server caching
proxy (such as Apache or Squid [36]) on each of a collec-
tion of hosts, changing the proxy configurations to store
cached pages in a common directory on WheelFS instead
of on the local disk. When the proxy fetches a page from
the origin server, it stores the content in a file whose name
is derived from the URL. The existing proxy code handles
HTTP, while WheelFS takes care of discovering whether
the distributed file system already contains a copy of the
desired page. The cache directory includes cues to ex-
press two important wide-area optimizations for a CDN
(cues are discussed in more detail in Section 5). Site=local
instructs WheelFS to store all newly-created files on a
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Figure 1: Placement and interaction of WheelFS components.

nearby WheelFS server (though this is the default behav-
ior). EventualConsistency enables the WheelFS client to
read from a locally-cached copy of a file without check-
ing with the WheelFS server system to see whether the
file has been subsequently modified. This design simpli-
fies the construction of the CDN by allowing re-use of
existing proxy software, though it does not provide all of
the optimizations in CoralCDN. Section 8.2 demonstrates
that this design achieves the main properties that one ex-
pects from a CDN.

4 WheelFS Design

A key design challenge is to provide reasonable defaults
that reduce application complexity while identifying a
small set of cues that can allow applications to tailor
storage behavior for high performance on the wide area.
This section explains the default behavior—called the
“core design”—and Section 5 describes how cues mod-
ify the defaults so that applications can tailor WheelFS
to their needs. By default, WheelFS provides close-to-
open semantics so that if an application works correctly
on a POSIX file system, it will also work correctly on
WheelFS.

4.1 Overview

A WheelFS deployment (see Figure 1) consists of client
nodes and storage nodes; a single host often plays both
roles. The WheelFS client software uses FUSE [19] to
present the distributed file system to local applications,
typically in /wfs. All client nodes in a given deployment
present the same file system tree in /wfs. Thus, when an
application opens a file, independent of on which client
the application runs, the open call returns a file descrip-
tor for the same file. The WheelFS client module commu-
nicates with WheelFS storage modules in order to look
up file names, create files, get directory listing, and read
and write files. Each client keeps a local cache of file and
directory contents.

Each file and directory object has a unique ID. At
any given time, every ID has a single “primary” stor-



age node that is responsible for maintaining the latest
contents of that object. WheelFS replicates objects us-
ing primary/backup replication. A configuration service
is responsible for ensuring agreement (using Paxos [23])
on the assignment of IDs to primary and backup storage
nodes. A client contacts an object’s primary storage node
when it needs to use the object; for example, looking up
a path name with multiple components typically involves
contacting a different storage node for each component,
which yields the ID of the next component in the path.

The core design of WheelFS addresses the following
questions:

* How does WheelFS partition the storage responsi-
bility for data objects among participating storage
nodes? (Section 4.2)

* How does WheelFS provide close-to-open consis-
tency in the face of concurrent file access and fail-
ures? (Section 4.4)

* How does WheelFS provide reasonable default read
and write performance for typical wide-area applica-
tions? (Section 4.5)

* How does WheelFS authenticate users and perform
access control? (Section 4.6)

4.2 Data storage assignment

WheelFS storage nodes store file and directory objects.
Each object is internally named using a unique 64-bit ID.
A file object contains opaque file data and a directory ob-
ject contains a list of name-to-object-ID mappings for the
directory contents. WheelFS spreads the load of storing
and serving files and directories across the participating
storage nodes.

WheelFS partitions the object ID space into slices
using the first 16 bits of the object ID. The configuration
service decides, for each slice, which storage nodes are
responsible for storing the objects in that slice. Each slice
has an associated replication level r, and the configuration
service ensures that there is one “primary” storage node
and r — 1 “backup” storage nodes for the slice. The num-
ber of ID slices is larger than the number of storage nodes
to help balance load. The configuration service reacts to
storage node failures and additions by creating new slice
assignments. The configuration service’s use of Paxos en-
sures that at any time there is at most one slice assignment.

A WheelFS client must know the slice assignment in
order to know which storage node to contact for each ob-
ject ID. To reduce the load on the configuration service,
the clients gossip with each other to learn the contents of
new assignments.

When an application creates a new file or directory, the
WheelFS client uses its knowledge of the slice assignment
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to assign the new object an ID that makes the storage node
on the same host (if there is one) responsible for the new
object. Storing data locally allows applications to achieve
high write throughput, since they can write at the rate of
the local disk instead of the rate of the wide-area network.

The WheelFS maint component of the storage mod-
ule runs every ten minutes to ensure that each object is
stored on the servers in its slice assignment. maint trans-
fers those local objects that the storage node is not in
charge of to their responsible storage nodes. The primary
storage node in the replica set also synchronizes with its
backups to ensure that the desired number of replicas is
stored, similar to the PassingTone algorithm [35].

4.3 Primary/backup replication

WheelFS uses primary/backup replication to manage
replicated objects. The slice assignment designates, for
each ID slice, a primary storage node and a number of
backup storage nodes. When a client needs to read or
modify an object, it communicates only with the primary.
The primary forwards updates to the backups. For each
object, the primary executes operations one at a time.

If the configuration service decides a storage node is not
reachable, it will create a new slice assignment that omits
that server. For slices for which the dead node was the
primary, the configuration service selects a new primary,
usually by promoting a backup. For slices for which the
dead node was a backup, the configuration service selects
anew backup. As a result, storage nodes may be responsi-
ble for slices for which they do not store the correspond-
ing objects; maint copies the required objects.

There must be only one primary server for a slice, to
avoid inconsistency. If the configuration service decides
that a storage node is no longer the primary, that node
must stop serving requests for that slice. This can be dif-
ficult if the underlying problem is a network partition: the
configuration service might think the node is dead when
it is actually alive, and the node did not hear about the
new slice assignment. WheelFS handles this with slice
leases—the primary for a slice must check with the con-
figuration service every ten minutes to ensure it is still the
primary. The configuration service does not announce a
new slice assignment until all relevant storage nodes have
acknowledged slice lease revocation or their slice leases
have expired. The slice lease time is a compromise: short
lease times lead to fast reconfiguration, while long lease
times allow storage nodes to operate despite the tempo-
rary unreachability of the configuration service.

4.4 Close-to-open consistency

WheelFS provides close-to-open consistency: if one ap-
plication writes a file and waits for close () to return,
and then a second application open () s and reads the
file, the second application will see the effects of the first



application’s writes. The reason WheelFS provides close-
to-open consistency by default is that many applications
expect it.

The WheelFS client has a write-through cache for file
blocks, for positive and negative directory entries (en-
abling faster pathname lookups), and for directory and
file meta-data. The primary server grants object leases for
cached meta-data and directory contents; the server inval-
idates object leases for a given piece of meta-data before
it executes any update requests.

Client nodes send file writes to WheelFS storage nodes
without waiting for the replies, to improve performance.
When an application calls close (), the client waits for
replies to all outstanding writes to the file. In order to en-
sure that the crash of a primary will not undo writes, the
primary waits for the backups to acknowledge the update
before it replies to the client. The WheelFS storage nodes
maintain a version number for each file object, which they
increment after each close () and after each change to
the object’s meta-data.

When an application open () s a file and then reads it,
the WheelFS client must decide whether the cached copy
of the file (if any) is still valid. The client uses file data if
the object version number of the cached data is the same
as the object’s current version number. If the client has an
unexpired object lease for the object’s meta-data, it can
use its cached meta-data for the object to find the cur-
rent version number. Otherwise it must contact the pri-
mary to ask for a new lease, and for current meta-data.
If the version number of the cached data is not current,
the client fetches new file data blocks from the primary
storage node.

WheelFS provides similar consistency for directory op-
erations: after the return of an application system call that
modifies a directory (creates or deletes a file or subdirec-
tory), applications on other clients are guaranteed to see
the modification. WheelFS clients implement this consis-
tency by always sending directory updates to the direc-
tory object’s primary, and by ensuring via lease or explicit
check with the primary that cached directory contents are
up to date.

The downside to close-to-open consistency is that if
the primary for an object is not available, all read and
write operations will block until the configuration service
chooses a new slice allocation with a new primary for the
object. The configuration service must wait until the pri-
mary’s slice lease expires, up to ten minutes. The cues
described in Section 5 allow the application to avoid these
delays at the expense of consistency.

Cross-directory rename operations in WheelFS are not
atomic with respect to failures. If a crash occurs at the
wrong moment, the result may be a link to the moved file
in both the source and destination directories.

4.5 Write locally

The default data placement policy in WheelFS is to write
locally, i.e., store the contents of a newly created file on
the local node’s disk if possible. This policy requires that
application nodes run both a WheelFS storage node as
well as a client node. The write-local policy allows large-
file writes at the speed of the local disk.

Modifying an existing file is not always fast, because
the file’s primary storage node might be far away. Appli-
cations desiring fast writes should store output in unique
new files, so that the local client node will be able to create
a new object ID for which the local storage node will be
the primary. Existing software often works this way; for
example, the Apache caching proxy stores a cached web
page in a unique file named after the page’s URL.

The write-local policy may not balance the storage load
across storage nodes, depending on whether each node
creates and writes files at roughly the same rate. Appli-
cations can use cues to control where files are stored.

4.6 Security

WheelFS is designed to be easily adaptable to a variety of
deployment scenarios. WheelFS maintains and enforces
user-based file permissions, but the definition of what con-
stitutes a user and how WheelFS verifies user identities
can vary according to the needs of each deployment. In
its most basic mode of operation, WheelFS provides min-
imal security, using unencrypted connections and trust-
ing client nodes to accurately identify users by local user
name or a client-based mapping. It takes no measures to
prevent a malicious client from impersonating a privileged
user. This provides a low-overhead model for local test-
ing or deployment on networks with strong isolation from
the public Internet. Other environments, however, require
stronger security models.

In the security model currently in development for
PlanetLab, where nodes have unrestricted access to the
Internet, an ordinary PlanetLab user can run WheelFS
storage nodes in their own slices on multiple machines.
This user is the trusted administrator to the WheelFS in-
stance, but needs no special permissions on PlanetLab it-
self. The administrator gives each machine an individual
private SSH key and the public keys for the other storage
nodes. With these keys, storage nodes can create secure
SSH connections to each other and prevent any malicious
servers from joining the system.

To add a (possibly untrusted) user to the system, the
administrator creates a file in WheelFS with one or more
SSH public keys for that user, and gives the user public
keys for one or more of the storage nodes. Since Planet-
Lab already uses SSH keys for authentication, these same
keys may conveniently be re-used to connect to WheelFS,
potentially forwarded by an SSH agent. For unattended
PlanetLab applications, the user will need to put a private



key in his or her individual slice for the WheelFS client
module to access. The user then runs the WheelFS client
in their own PlanetLab slice. With the storage nodes’ pub-
lic keys and access to user’s private key, the client can cre-
ate secure SSH connections to the various storage nodes,
ensuring that stored data is not accessible to outside ob-
servers and allowing users to prove their identity to the
server. Client-to-client data distribution can similarly use
the user public keys available in WheelFS to create secure
connections.

5 Semantic cues

To achieve good performance over the wide area, applica-
tions must be able to control where data is stored as well
as the desired tradeoff between consistency and availabil-
ity. WheelFS allows applications to exert control using
semantic cues. This section describes how applications
specify cues and the set of cues that WheelFS provides.

5.1 Specifying cues

WheelFS  allows applications to
mantic cues in  pathnames; for  example,
/wfs/.EventualConsistency/data refers to /wfs/data
with the cue .EventualConsistency. This approach
allows applications to store data in the wide area with
much less specialized code than, for example, adding a
new system call to communicate cues.

A pathname might contain several cues. WheelFS uses
the following rules to combine them: (1) a cue applies to
all files and directories in the pathname below the cue;
and (2) cues that are specified later in a pathname may
override cues in the same category appearing earlier. Ta-
ble 1 lists the cues and the categories into which they are
grouped.

The main advantage of embedding cues in pathnames
is that it keeps the POSIX interface unchanged. This
choice allows developers to program with an interface
with which they are familiar and to re-use software eas-
ily. For example, Section 6 shows how to build a caching
CDN based partially on unmodified Apache.

A disadvantage of cues is that they may break software
that parse pathnames and incorrectly assume that a cue
is a directory. We have not encountered examples of this
problem.

specify  se-

5.2 Eventual Consistency

Applications can specify the .EventualConsistency cue
to relax WheelFS’s default close-to-open consistency.
WheelFS’s eventual consistency semantics are intended
to allow a client to proceed despite unreachability of the
primary storage node, and in some cases the backups as
well. For reads and pathname lookups, eventual consis-
tency allows a client to read from a backup if the primary
is unavailable, and from the client’s local cache if the pri-

mary and backups are both unavailable. For writes and
filename creation, eventual consistency allows a client to
write to a backup if the primary is not available. A con-
sequence of eventual consistency is that clients may not
see each other’s updates if they cannot all reliably contact
the primary. Many applications such as CDNs or email
systems can tolerate eventual consistency without signifi-
cantly compromising their users’ experience, and in return
can decrease delays and minimize service unavailability
when a primary or its network link are unreliable.

When reading files or using directory contents with
eventual consistency, a client may have a choice between
the contents of its cache, replies to queries to one or more
backup servers, and a reply from the primary. A client will
use the data with the highest version number that it finds
within a time limit. The default time limit is one second,
but can be changed with the .MaxTime=X cue (in units of
milliseconds). If .MaxTime is used without eventual con-
sistency, the WheelFS client will yield an error if it cannot
contact the primary after the indicated time.

The maint component periodically reconciles a pri-
mary and its backups so that they eventually contain the
same data for each file and directory. maint may need to
resolve conflicting versions of objects. For a directory, it
puts the union of files present in the directory’s replicas
into the reconciled version. If a single filename maps to
multiple IDs, maint chooses the one with the smallest
ID and renames the other files. For a file, maint chooses
arbitrarily among the replicas that have the highest version
number; this may cause writes to be lost.

WheelFS’s eventual consistency ensures only that all
replicas of an object will eventually have identical im-
ages, which is weaker than in systems like Bayou [40]. For
example, maint may cause a recently-deleted file to re-
appear. On the plus side, WheelFS’s eventual consistency
can be implemented with little change to the core design
and doesn’t require applications to provide resolvers for
conflicting writes.

5.3 Durability

WheelFS allows applications to express durability pref-
erences with two cues: .RepLevel=N and .SyncLevel=N.
These cues can only be specified when an object is first
created, their values are stored in the object’s meta-data,
and they apply to all operations on the object.

The .RepLevel=N cue causes the primary to store the
object on N — 1 backups instead of on the default two
backups. The maximum replication level is four.

The .SyncLevel=N cue causes the primary to wait only
for the acknowledgment of successful writes to N backup
servers before acknowledging the client’s request, reduc-
ing durability but also reducing delays if some servers are
slow or unreachable. If this cue is specified for a file and
the C1ient module contacts the primary ona close for



Cue Category | Cue Name Meaning (and Tradeoffs)

Consistency .EventualConsistency Relax close-to-open consistency, thus trading off strong semantics for maximum
availability in the face of failures. Applications might see different contents under
the same file and directory name and the re-appearance of newly-deleted files.

MaxTime=N Limit a file system operation to take no more than N ms in trying to contact the
primary.

Placement Site=X Store data on a server at the site named X, thus trading off write performance for
faster reads if applications know that clients in site X will access the data.

.KeepTogether Store all files in a directory subtree on the same set of servers.
.RepSites=N Store replicas across N different sites.
Durability .RepLevel=N Keep N replicas for a data object. The maximum allowed replicas is four.
.SyncLevel=N Make an update return as soon as /N out of all replicas have accepted it, thus
trading durability for write performance.

Large reads .WholeFile Enable pre-fetching of an entire file upon the first read request.

.Hotspot Maximize the aggregate read throughput of many clients by cooperatively fetch-
ing random file blocks from clients’ cache.

Table 1: Semantic cues.

that file, the primary acknowledges any outstanding writes
as soon as it has written them to its local storage module,
and that storage module has received /N — 1 acknowledg-
ments from backup servers.

5.4 Placement

Because of the high latency and low bandwidth of wide-
area networks, applications can benefit from being able to
store data near the clients who are likely to use that data.
For example, a wide-area email system may wish to store
all of a user’s message files at a site near that user.

WheelFS allows applications to specify placement
information upon the creation of a file or directory.
WheelFS supports three different placement cues, all of
which we have found useful. First, the .Site=X cue in-
dicates the desired site for a newly-created file’s primary.
The site name can be a simple string, e.g. .Site=westcoast,
or a domain name such as .Site=rice.edu. If the remote
site is temporarily unreachable, WheelFS will store the
newly created file on the local node if the file also has the
.EventualConsistency cue. maint will eventually trans-
fer the misplaced file to the desired site. If no eventual
consistency is specified, file creation will fail or block if
the remote site is unreachable.

Second, the .KeepTogether cue indicates that an entire
sub-tree should reside on as few storage nodes as possible.
Clustering a set of files together is useful to reduce the
delay for operations that access multiple files in the set.
For example, an email system would like to store all of
a given user’s message files on few nodes so that it takes
less time for a user to get a list of all messages.

Third, the .RepSites=N cue indicates how many dif-
ferent sites should have copies of the data. The number
of replica sites must be smaller than the replication level.
For example, specifying .RepSites=2 with a replication
level of three causes two replicas to be kept at one site
and the third replica at a different site. Replicating data

at fewer wide-area sites improves write performance be-
cause less data is transferred over the wide area. On the
other hand, keeping all replicas at a single site makes ap-
plications more susceptible to correlated failures within a
site.

The configuration service and the clients cooperate to
implement these cues. The configuration service knows,
for each storage node, the name of the site at which it re-
sides. The configuration service has a policy governing,
for each slice, from which site it must choose the slice’s
primary, and from how many distinct sites it must choose
the backups. It includes the current policy in the slice as-
signment that all clients fetch. When creating a new object
with a placement cue, a client consults the policy to find a
slice suitable for the object.

5.5 Large reads

WheelFS provides two cues to enable large-file read opti-
mizations: .WholeFile and .Hotspot. The .WholeFile cue
instructs the C1ient module to start pre-fetching the en-
tire file into the client cache when the application first
opens the file. The .Hotspot cue indicates that a file might
be read by many nodes within a short time window (e.g.,
binaries at application startup time). To optimize for these
read hotspots,1 client nodes fetch from each other’s caches
in a style similar to BitTorrent [14] and Shark [9]. To im-
plement the .Hotspot cue, a file’s primary maintains a list
of Client modules that have recently cached parts of
the file. C1ient modules use Vivaldi coordinates [15] to
choose nearby nodes from which to fetch data.

When the cues .WholeFile and .Hotspot are used
together, Client modules pre-fetch blocks at random
rather than sequentially from other clients’ caches, to op-
timize the collective throughput [9]. Unlike the cues de-

I'We considered naming this cue .slashdot, but decided its inclusion
in paths might lead to rather hard-to-pronounce pathnames.



NAME= ‘hostname *

TIME="‘date +%s °

FILE=$TIME .$NAME.d at

D=/wfs/ping

NODES=$D/nodes

RESULTS=$D/results/
BIN=$D/bin/.EventualConsistency/.
MaxTime=5000/.HotSpot/. WholeFile

8 PING=$BIN/ping

9 PROCESS=$BIN/process

10 TMP=/tmp/$FILE

11 DATA=$D/.EventualConsistency/dat

12 mkdir —p $DATA/$NAME

13 cd $DATA/$NAME

14 xargs —nl $PING —c 10 < $NODES > $TMP
15 cp $TMP $SFILE

16 rm $TMP

17 if [ $NAME = “nodel” 1];
18  mkdir —p $RESULTS

19  $PROCESS :* > $RESULTS/$STIME.out
20 fi

NN R W N =

then

Figure 2: A shell script implementation of All-Pairs-Pings us-
ing WheelFS.

scribed earlier, the .WholeFile and .Hotspot cues are not
strictly necessary: a file system could potentially learn to
adopt the right cue by observing application access pat-
terns. We leave such adaptive behavior to future work.

6 Applications

WheelFS is designed to help the construction of wide-area
distributed applications, by shouldering a significant part
of the burden of managing fault tolerance, consistency,
and sharing of data among sites. This section evaluates
how well WheelFS fulfils that goal by describing four ap-
plications that have been built using it.

All-Pairs-Pings. All-Pairs-Pings [38] monitors the net-
work delays among a set of hosts. Figure 2 shows a sim-
ple version of All-Pairs-Pings built from a shell script and
WheelFS, to be invoked by each host’s cron every few
minutes. The script pings the other hosts and puts the re-
sults in a file whose name contains the local host name
and the current time. After each set of pings, a coordina-
tor host (“nodel”) reads all the files, creates a summary
using the program process (not shown), and writes the
output to a results directory.

This example shows that WheelFS can help keep easy
distributed tasks easy, while providing good failure be-
havior. WheelFS stores each host’s output on the host’s
own WheelFS server, so that hosts can record ping output
even when the network is broken. WheelFS automatically
collects data files from hosts that reappear after a period
of separation. Finally, WheelFS provides each host with
the required binaries and scripts and the latest host list

file. Use of WheelFS in this script eliminates much of the
complexity of a previous all-pairs-pings program, which
explicitly dealt with moving files among nodes and coping
with timeouts.

Caching CDN. The WheelFS-based CDN con-
sists of hosts running Apache 2.2.4 caching proxies
(mod_disk_cache) and WheelFS. The Apache config-
uration file places the cache file directory on WheelFS:
/wfs/.EventualConsistency,MaxTime=1000,Hotspot/ cache/.

When the Apache proxy can’t find a desired page in the
cache directory on WheelFS, it fetches it from the origin
Web server and writes a copy in the WheelFS directory as
well as serving it to the requesting browser. Other CDN
nodes will then be able to read the page from WheelFS in-
stead of contacting the origin server, thereby reducing its
load. To cope with popular web files, the line in the con-
figuration file specifies the .Hotspot cue so that WheelFS
clients fetch from each others’ caches to increase total
throughput. The .EventualConsistency cue allows clients
to read files and directory entries, and to create new files,
even if the primary server cannot be contacted. The Max-
Time cue ensures that WheelFS won’t delay Apache by
more than a second. If Apache tries to read a file that
WheelFS cannot find quickly, WheelFS will return an er-
ror, causing Apache to fetch the page from the origin Web
server.

Although this CDN implementation is fully functional,
it does lack features present in other CDN systems. For
example, CoralCDN uses a hierarchy of caches to avoid
overloading any single tracker node when a file is popular.

Mail service. We use WheelFS to construct a large-
scale email service with standard protocols (SMTP and
IMAP). All nodes in WheelFS-email run as a file server
and WheelFS-email stores messages as individual files
replicated over multiple sites. Each node runs an unmodi-
fied sendmail process to accept incoming mail. Sendmail
stores messages in maildir format via procmail that writes
each new email in a separate file. The separate files help
avoid conflicts from concurrent message arrivals, since
any site could receive mail for any user. Procmail stores
message files for user U in the following directory: /wfs
/mail/.Eventual Consistency,Site=X,KeepTogether,RepSites=2
/U/Maildir/new/. Each node also runs a Dovecot IMAP
server [17], and a user retrieves mail via a nearby IMAP
server using a locality-preserving DNS service [18].

The .EventualConsistency cue maximizes availability:
Any node can accept a message for storage even if all
nodes in the replica set are down. If the primary server
is unavailable, a user can continue reading emails from
backup servers. The .Site=X cue indicates the desired pri-
mary location for a user’s emails. In particular, X is con-
figured for be the closest site to the user’s usual location so
that reading emails is fast. The .KeepTogether cue causes



all emails of the same user to be stored on a single replica
set. Minimizing the spread of file storage improves the
latency of operations involving multiple files such as list-
ing multiple emails in a user’s inbox [30]. WheelFS-email
uses the default replication level of three but adds an addi-
tional .RepSites=2 cue to keep at least one off-site replica
of each mail. To avoid the unnecessary replication of tem-
porary lock files and soft state such as an IMAP index,
Dovecot uses .RepLevel=1 for much of its internal data

WheelFS-email has the same goal as the cluster email
service Porcupine [30], namely, to provide scalable email
storage and retrieval with high availability. Unlike Porcu-
pine, WheelFS runs on a set of wide area data centers.
Replicating emails over multiple sites increases the ser-
vice’s availability when a single site goes down. Porcu-
pine consists of custom built storage and retrieval com-
ponents. In contrast, the use of a wide area file system in
WheelFS-email allows it to re-use existing software like
sendmail, procmail, and Dovecot for writing and retriev-
ing emails. Both Porcupine and WheelFS-email use even-
tual consistency to maximize availability but Porcupine
has a better reconciliation policy as its “deletion record”
prevents deleted emails from re-appearing.

File Distribution. Any large file can be distributed
to many clients efficiently by simply storing the file
in WheelFS and using the large read cues, (ie.,
/wfs/.WholeFile,Hotspot/largefile). The .Hotspot cue
maximizes throughput and improves scalability for flash-
crowds by fetching blocks from other clients’ caches. The
.WholeFile cue prefetches all of the file, so that WheelFS
can fetch blocks while the application is busy and so that
blocks do not have to be fetched in the order the appli-
cation is reading the file. When the two cues are used
together, WheelFS fetches blocks in a random order, so
clients can utilize each others’ caches even if they start
reading almost simultaneously.

We envision efficient file distribution to be particu-
larly useful in distributing binaries for wide-area exper-
iments, in the spirit of Shark [9] and CoBlitz [27]. Like
Shark, WheelFS uses cooperative caching to reduce load
on the file server. Shark further reduces the load on the file
server by using a distributed index to keep track of cached
copies, whereas WheelFS relies on the primary server to
track copies. Unlike WheelFS or Shark, CoBlitz is a CDN,
so files cannot be directly accessed through a mounted
file system. CoBlitz caches and shares data between CDN
nodes rather than clients, so the nodes have very high
throughput to each other, but throughput to clients is lim-
ited by the CDN.

7 Implementation

The current prototype of WheelFS consists of 14,600 lines
of C++ code, using pthreads and STL. In addition, the im-

plementation uses a new RPC library (2,600 lines) that
implements Vivaldi network coordinates [15].

The Client module uses FUSE’s “low level” inter-
face to get access to FUSE identifiers, which it translates
into WheelFS-wide unique object IDs. The WFS cache
layer in Client module buffers writes in memory and
caches file blocks in memory and on disk.

The configuration service is implemented as a set of
replicated state machines. For maximum availability, we
use five configuration servers distributed across three
sites.

Permissions and access control are implemented. Se-
cure SSH connections are not yet implemented.

8 Evaluation

This section shows that the WheelFS applications of
Section 6 perform well enough across the wide-area to
achieve their main goals. Ideally, we would like to com-
pare to the original applications in their intended environ-
ments, but for many of the applications we don’t have ac-
cess to the original source code (e.g., Porcupine, CoDeen,
CoBlitz) or we don’t have a large-enough testbed (e.g.,
CoralCDN), because only a small subset of the PlanetLab
nodes supports FUSE. We can demonstrate, however, that
the WheelFS versions achieve their primary goals (e.g.,
reducing the load on the server in the case of a CDN),
and that WheelFS handles much of the burden of dealing
with the wide-area network. The experiments involve the
CDN, mail, and file distribution applications on both Em-
ulab and a small wide-area Internet testbed, and include
comparisons with CoralCDN and BitTorrent.

8.1 Experimental setup

All scenarios use WheelFS configured with 64 KB blocks,
a 100 MB in-memory client LRU block cache supple-
mented by an unlimited on-disk cache, one minute object
leases, and a default replication level of three (the respon-
sible server plus two replicas), unless stated otherwise.
Each node runs both a WheelFS server and a WheelFS
client process, with one node also acting as a configura-
tion server.

Even though WheelFS and the applications run on
PlanetLab, we don’t use PlanetLab in this evaluation,
because we cannot isolate WheelFS’s performance from
other applications running on Planetlab—instead of be-
ing bottlenecked by the disk or the wide-area network the
applications are bottlenecked by CPU performance. In ad-
dition, only a very small set of PlanetLab nodes currently
support FUSE-based file systems. For experiments in the
real world, we use a small, private, wide-area testbed con-
sisting of 20 nodes located at three different sites: MIT,
NYU, and Stanford. These nodes all run on a Linux 2.6
kernel, vary in processing speed between 2.4 and 3.4 GHz,
and contain a single SCSI or IDE disk.
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Figure 3: The aggregate client service rate and origin server
load for both CoralCDN and WheelFS CDN, running on the
real-world testbed.

For more control over the network topology, we also
run experiments on the Emulab [44] testbed. Each Emulab
host runs a standard Fedora Core 6 Linux 2.6.22 kernel
and FUSE version 2.6.5, and has a 3 GHz CPU. We use
a WAN topology consisting of 5 LAN clusters of 3 nodes
each. Each LAN cluster has 100 Mbps, sub-millisecond
links between each node. Clusters connect to the wide-
area network via a single bottleneck link of 6 Mbps, with
100 ms RTTs between clusters.

8.2 Caching CDN

Performance under normal conditions. These exper-
iments compare the performance of CoralCDN and the
WheelFS CDN (as described in Section 6). The main goal
of the CDN is to reduce load on target web servers via
caching, and secondarily to provide client browsers with
reduced latency and increased availability.

These experiments use the private Internet testbed dis-
cussed in Section 8.1. A Web server, located at NYU be-
hind an emulated slow link (shaped using Click [22] to
be 400 Kbps and have a 100 ms delay), serves 100 unique
41KB Web pages. Each of the 20 testbed nodes runs a web
proxy. PlanetLab nodes located less than 10 ms from each
testbed site act as clients; for each proxy node, there is
a client process continually requesting randomly selected
pages from the NYU web server. This experiment, in-
spired by one in the CoralCDN paper [18], models a flash
crowd where a set of files on an under-provisioned server
become popular very quickly.

Figures 3 and 4 show the results of these experiments.
Figure 3 plots both the request load seen by the ori-
gin server and the aggregate number of client requests
served by each CDN over time. While Coral CDN reduces
the origin server load, and caches copies of the pages on
all proxies, more quickly, WheelFS performs compara-
bly and reaches a similar sustained aggregate client ser-
vice rate. Figure 4 plots the cumulative distribution func-
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Figure 4: The CDF for the client request latencies of both
CoralCDN and WheelFS CDN, running on the real-world
testbed.
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Figure 5: The aggregate client service rate and origin server
load for WheelFS CDN, running on Emulab, without failures.

tion (CDF) of the individual request latencies seen by the
clients throughout the course of the experiment. WheelFS
closely matches CoralCDN for the majority of requests.

Because CoralCDN contains many optimizations spe-
cific to a distributed caching proxy system, it outper-
forms WheelFS in some respects. For instance, a Coral-
CDN proxy initially registers its intent to download a spe-
cific page before doing so, preventing other nodes from
needlessly downloading the same page; Apache, running
on WheelFS, has no such mechanism, so initially several
nodes may download the same page before Apache caches
the data in WheelFS. However, we believe many of these
optimizations could be implemented in Apache with mi-
nor modifications (in this case, a simple lock file would
do the trick).

Performance under failures. Wide-area network prob-
lems that prevent WheelFS from contacting storage nodes
should not translate into long delays for proxy clients; if a
proxy cannot quickly fetch a cached page from WheelFS,
it should ask the origin web server. As discussed in Sec-
tion 6, the cues .EventualConsistency and .MaxTime



1000

Total client ecui‘sserved —
Drigim server load ——+-—
5 100 AN A AT
(=)
%ﬁ: 10 ¢ E
B
=}
g
o4 1L i
1
i
o1 1SS
200 300 400 500 600 700

Time (seconds)

Figure 6: WheelFS CDN running on Emulab with failures, us-
ing the .EventualConsistency cue. Gray regions indicate the du-
ration of a failure.

yield this behavior, causing open () to either yield lo-
cally cached data or fail quickly if the WheelFS client can-
not contact storage nodes. Apache fetches from the origin
web server if the open () fails.

Figures 6 and 7 compare failure performance of
WheelFS with the above cues to failure performance of
the default close-to-open consistency with 1-second time-
outs. Each minute one wide-area link connecting an entire
LAN site to the rest of the network fails for thirty seconds
and then revives. This failure period is not long enough
to cause view changes in WheelFS, so the servers in the
LAN will still be responsible for data they originated.
These experiments took place on the Emulab topology de-
scribed in Section 8.1, using additional client nodes con-
nected to each site using a 10 Mbps, 20 ms link—clients
maintain connectivity to their site during failures. The ori-
gin Web server run behind a 400 Kbps link, with 175 ms
RTT to the client nodes. For comparison, Figure 5 shows
the performance of WheelFS on this topology when there
are no failures.

Under eventual consistency, a proxy can use a locally-
cached copy of a Web page even if it cannot access the
file’s primary server (as long as the object lease for the
content is still valid). Under the default close-to-open con-
sistency, a proxy cannot use a locally cached copy of a
page if the lease has expired and it cannot check its fresh-
ness because the primary server has failed, and in that cir-
cumstance will be forced to download the page anew from
the origin server.

Figure 6 shows the performance of the WheelFS CDN
with eventual consistency. The graph shows a period of
time after the initial cache population. The gray regions
indicate when a failure was present. Throughput does fall
as timeouts are incurred during a failure, though overall
the aggregate client service rate remains steady near 100
requests/sec. Figure 7 shows that with close-to-open con-
sistency, throughput falls as soon as a failure occurs, and
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Figure 7: WheelFS CDN running on Emulab with failures, with
close-to-open consistency. Gray regions indicate the duration of
a failure.

Stat Median | Mean Max
Email size 46KB | 6.85KB | 4.11 MB
Msgs revd/day/user 3.86 5.96 2840
IMAP logins/day/user | 5.05 18.54 4791

Table 2: Statistics of our mail workload distribution, taken from
NYU mail server traces.

hits to the origin server increase greatly. This indicates
that by exploiting the fact that a CDN does not require
strong consistency, we can use WheelFS’s semantic cues
to build a simple CDN that performs well under wide-area
conditions.

8.3 Mail

To test the performance of our WheelFS mail system (as
detailed in Section 6, we obtained a trace of SMTP and
IMAP operations from the mail servers at New York Uni-
versity. The SMTP trace contains 43 days of logs from
half of NYU’s SMTP servers, while the IMAP log con-
tains 3 days of logs for NYU’s IMAP server. To get an
overall estimate of the workload seen by a real mail sys-
tem, we scaled the IMAP trace up to 43 days (i.e., we
multiplied the total number of IMAP logins seen for each
user by %) and looked at the intersection of users that
appear in both traces. The resulting distribution covers
47699 users; its salient statistics appear in Table 2.

IMAP and SMTP operations are a stressful file sys-
tem benchmark. For instance, a typical IMAP opera-
tion (reading a maildir-formatted inbox and finding no
new messages) generates over 600 FUSE operations
on the server that handles the request. These primar-
ily consist of lookups on directory and file names, but
also includes more than 30 directory operations (cre-
ates/links/unlinks/renames), more than 30 small writes,
and a few small reads.

In this experiment we use Emulab network described in
Section 8.1, deploying WheelFS on 15 nodes in 5 clusters.
Clients, running as threads on five additional nodes, con-
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Figure 8: The throughput of our WheelFS wide-area mail sys-
tem, compared with a static, unreplicated system.

nect to servers in their closest cluster (their “home” site)
over a shared wide-area link (1 Mbps, with a 20 ms RTT
to the site). We measure throughput in operations/second
(either checking an inbox or sending a message), with an
increasing number of concurrent clients. Each client per-
forms 20 operations according to the distribution in Ta-
ble 2. Users always read their mail from the site in which
their mailbox directory resides, but send mails to random
users. A node at the sender’s “home” site writes these new
mails to WheelFS, though the recipient’s mailbox direc-
tory is likely to reside at a different site. User mailbox di-
rectories are randomly and evenly distributed across sites,
and when replicated, each file is replicated at multiple
unique sites.

We compare against a mail system that uses a local
file system. Users still check their mail at their “home”
site, but the clients have a static table (acting like DNS
MX records) to look up the location of a recipient’s mail-
box, and forward each incoming message explicitly to that
node. There is no replication, so at most one copy of every
email is sent across the network and stored.

Figure 8 shows the aggregate number of operations
served by the entire system per second. When WheelFS
runs without replication (.RepLevel=1), it can handle
75% of the load handled by the mail system that uses
local storage when faced with 250 concurrent clients—
about 145 operations/sec. This difference in throughput,
however, is explained by the fact that WheelFS stores
meta-data for each object in a file on the local file system,
and must update the version number stored in the meta-
data for every modifying operation (creates/renames/un-
links/writes/etc.) This results in twice the amount of disk
writes than is performed by the mail system on the lo-
cal file system. Keeping this meta-data in memory allows
WheelFS to achieve very similar performance to the local
version, but a more durable solution would be to optimize
carefully WheelFS’s on-disk data and meta-data layout.

When files are replicated at three unique sites (.Rep-
Level=3,.RepSites=3), throughput drops by a factor of

12

20 Loca FSIMAP —>¢ -
WheelFS IMAP, 1replica —=—
WheelFS IMAP, 3replicass —©—
15 | WheelFSIMAP, 3 replicas (w/ tmp) —-@ -

Wheel FS IMAP, 3 replicas (nosync) - -A--

10

Average latency in seconds

Number of clients

Figure 9: The average latencies of individual IMAP and SMTP
operations, for both WheelFS and a static, unreplicated system.

3.5 when there are 250 concurrent clients, due to the extra
work done by the nodes and the network.

Figure 9 shows the average latencies of individual
IMAP operations for each system configuration, as the
number of clients varies. We omit SMTP operation laten-
cies due to space constraints. The unreplicated WheelFS
system offers higher latencies than the ones offered by the
local, static system by nearly 60%, and again this is at-
tributable to extra disk accesses. The replicated version
incurs penalties due to synchronous file replication across
multiple sites.

However, if the administrator of the system is willing
to use the SyncLevel=0 cue to trade off durability for
performance, then WheelFS-email achieves latencies and
service rates even better than the local system. These are
indicated by the “WheelFS, 3 replicas (nosync)” lines on
Figures 8 and 9. In this configuration, the primary storage
module does not immediately £sync writes to disk, and
returns to the client before receiving acknowledgements
from backup replicas.

As Section 6 mentions, Dovecot writes temporary lock
files and soft-state index files to WheelFS. For perfor-
mances reasons, these files are unreplicated by default.
To highlight the benefit of being able to assign different
files different replication levels in the same file system,
Figures 8 and 9 also include results for when these files
are replicated at multiple sites, labeled “WheelFS, 3 repli-
cas (w/ tmp)”. This configuration incurs a modest latency
penalty for IMAP operations. In this case, the ability to
specify replication policy via cues at a fine granularity sig-
nificantly impacts performance.

8.4 File distribution

Our file distribution experiments use a WheelFS network
consisting of 15 nodes, spread over five LAN clusters con-
nected by the emulated wide-area network described in
Section 8.1. Nodes attempt to read a 50 MB file simulta-
neously (initially located at an originating, 16*" node that
is in its own cluster) using the .Hotspot and .WholeFile
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Figure 10: CDF of client download times of a 50 MB file us-
ing BitTorrent and WheelFS with the .Hotspot and .WholeFile
cues. Also shown is the time for a single client to download 50
MB directly using ttcp.

cues. For comparison, we also fetch the file using BitTor-
rent [14]. We configured BitTorrent to allow unlimited up-
loads and to use 64 KB blocks like WheelFS (in this test,
Bittorrent performs strictly worse with 256 KB blocks).

Figure 10 shows the CDF of the download times, under
WheelFS and Bittorrent, as well as the time for a single di-
rect transfer of 50 MB between two wide-area nodes (73
seconds). WheelFS’s median download time is 146 sec-
onds, showing that WheelFS’s implementation of coop-
erative reading is slightly better than BitTorrent’s: Bittor-
rent clients have a median download time of 191 seconds.
The improvement is due to WheelFS clients fetching from
nearby nodes according to Vivaldi coordinates?; Bittorrent
does not use a locality mechanism. Of course, both solu-
tions offer far better download times that 15 simultaneous
direct transfers from a single node, which in this setup has
a median download time of 892 seconds.

8.5 Summary

When possible, this section compared WheelFS appli-
cations to similar existing distributed applications. The
WheelFS applications perform nearly as well as these cus-
tom, optimized applications, despite reusing stock soft-
ware designed to run on local file systems. Used in
this way, WheelFS simplifies the implementation of dis-
tributed applications without greatly sacrificing perfor-
mance, by providing a distributed storage layer that offers
an API familiar to many existing applications.

9 Related Work

There is a humbling amount of past work on distributed
file systems, wide-area storage in general and the tradeoffs
of availability and consistency. PRACTI [10] is a recently-

2Without using Vivaldi coordinates, WheelFS achieves a median
download time of 300 seconds. However, this leaves WheelFS without
any optimizations for preferring fast nodes to slow nodes, whereas Bit-
Torrent does.
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proposed framework for building storage systems with ar-
bitrary consistency guarantees (as in TACT [46]). Like
PRACTI, WheelFS maintains flexibility by separating
policies from mechanisms, but it has a different goal
than PRACTI. While PRACTI and its recent extension
PADRE [11] are designed to simplify the development
of new storage or file systems, WheelFS itself is a flex-
ible file system designed to simplify the construction of
distributed applications. As a result, WheelFS’s cues are
motivated by the specific needs of applications (such as
the .Site cue) while PRACTT’s primitives aim at cover-
ing the entire spectrum of design tradeoffs (e.g., strong
consistency for operations spanning multiple data objects,
which WheelFS does not support).

There exist numerous distributed file systems, but most
are designed to support a workload generated by desk-
top users (e.g., NFS [32], AFS [33], Farsite [5], xFS [8],
Frangipani [12], Ivy [25]). As such, they strive to always
provide a consistent view of data, while sometimes al-
lowing for disconnected operations (e.g., Coda [34] and
BlueFS [26]). Cluster file systems such as GFS [20] and
Ceph [43] have demonstrated that a distributed file system
can dramatically simplify the construction of distributed
applications within a large cluster with good performance.
Extending the success of cluster file systems to the wide-
area environment continues to be difficult due to the trade-
offs necessary to combat wide-area network challenges.
Similarly, Sinfonia [6] offers highly-scalable cluster stor-
age for infrastructure applications, and allows some de-
gree of intra-object consistency via lightweight transac-
tions. However, it targets storage at the level of individ-
ual pieces of data, rather than files and directories like
WheelFS, and uses protocols like two-phase commit that
are costly in the wide area.

Successful wide-area storage systems generally exploit
application-specific knowledge to make decisions about
trade-offs in the wide-area environment. As a result, many
wide-area applications include their own storage lay-
ers [7, 14, 18,30] or adapt an existing system [9,27,41].
Unfortunately, most existing storage systems, even more
general ones like OceanStore/Pond [28] or S3 [1], are only
suitable for a limited range of applications and still require
a large amount of code to use. DHTs are a popular form
of general wide-area storage, but, while DHTs all offer
a similar interface, they differ widely in implementation.
For example, UsenetDHT [35] and the Coral Content Dis-
tribution Network (CDN) [18] both use a DHT, but their
DHTs differ in many details and are not interchangeable.

Some wide-area storage systems have begun to offer
configuration options in order to make them suitable for
a larger range of applications. Amazon’s Dynamo [16]
works across multiple data centers and provides develop-
ers with two knobs: the number of replicas to read or to
write, in order to control durability, availability and con-



sistency tradeoffs. By contrast, WheelFS’s cues are at a
higher level (e.g., eventual consistency versus close-to-
open consistency). Bayou [40] and Pangaea [31] provide
eventual consistency by default while the latter also al-
lows the use of a “red button” to wait for the acknowl-
edgement of updates from all replicas explicitly. Like Pan-
gaea and Dynamo, WheelFS provides flexible consistency
tradeoffs. Additionally, WheelFS also provides controls in
other categories (such as data placement, large reads) to
suit the needs of a variety of applications.

10 Conclusion

The results from Section 8 indicate that WheelFS meets
its goals as a flexible, wide-area distributed storage layer.
Using WheelFS real-world applications can be built eas-
ily by reusing existing software while performing well
on wide-area networks by maintaining sufficient control
over consistency, placement, and failure handling through
cues. We hope that these results will encourage the adop-
tion of file systems on testbeds and across data centers,
and thereby simplify the construction of future wide-area
applications.
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