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Abstract
Application programmers increasingly prefer distributed
storage systems with distributed transactions and strong
consistency (e.g., Google’s Spanner) for their strong
guarantees and ease of use. Unfortunately, existing
transactional storage systems are expensive to use be-
cause they rely on expensive replication protocols like
Paxos for fault-tolerance. In this paper, we take a new
approach to make transactional storage systems more af-
fordable; we eliminate consistency from the replication
protocol, while still providing distributed transactions
with strong consistency to applications.

This paper presents TAPIR – the Transaction Ap-
plication Protocol for Inconsistent Replication – the
first transaction protocol to use a replication protocol,
inconsistent replication, that provides fault-tolerance
with no consistency. By enforcing strong consistency
only in the transaction protocol, TAPIR is able to com-
mit transactions in a single round-trip and schedule
distributed transactions with no centralized coordina-
tion. We demonstrate the use of TAPIR in TAPIR-KV, a
key-value store that provides high-performance trans-
actional storage. Compared to system using conven-
tional transaction protocols that require replication with
strong consistency, TAPIR-KV has 2× better latency and
throughput.

1. Introduction
Distributed storage systems provide fault-tolerance and
availability for large-scale web applications like Google
and Amazon. Increasingly, application programmers
prefer systems that support distributed transactions with
strong consistency1 to help them manage application
complexity and concurrency in a distributed environ-
ment. Several recent systems [3, 7, 15, 19] reflect this

1 Strong consistency for transactions is sometimes referred to as
linearizable isolation or external consistency. We use the terms
interchangeably in this paper.

trend, most notably Google’s Spanner system [8], which
supports linearizable transactions.

For application programmers, distributed transac-
tional storage with strong consistency comes at a price.
These systems commonly use replication for fault-
tolerance; unfortunately, replication protocols with strong
consistency, like Paxos [21], impose a high performance
cost. They require cross-replica coordination on every
operation, increasing the latency of the system, and typ-
ically need a designated leader, reducing the throughput
of the system.

A number of transactional storage systems have ad-
dressed some of these performance limitations. Some
systems reduce throughput limitations [15, 33] or wide-
area latency [19, 30], while others tackle latency and
throughput for read-only transactions [8], commutative
transactions [19] or independent transactions [9]. Even
more have sought to provide better performance at the
cost of a limited transaction model [2, 44] or weaker
consistency model [29, 40]. However, none of these sys-
tems have been able to improve latency and throughput
for general-purpose, replicated read-write transactions
with strong consistency.

In this paper, we use a new approach to reduce the
cost of replicated, read-write transactions and make
transactional storage more affordable for application
programmers. Our key insight is that existing transac-
tional storage systems waste work and performance by
integrating a distributed transaction protocol and a repli-
cation protocol that both enforce strong consistency. In-
stead, we show that it is possible to provide distributed
transactions with better performance and the same trans-
action and consistency model using replication with no
consistency.

To demonstrate our approach, we designed TAPIR
– the Transactional Application Protocol for Inconsis-
tent Replication. TAPIR uses a new replication tech-
nique, called inconsistent replication (IR), which pro-
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vides fault-tolerance without consistency. IR requires
no synchronous cross-replica coordination or designated
leaders. Using IR, TAPIR is able to commit a distributed
read-write transaction in a single round-trip and sched-
ule transactions across partitions and replicas with no
centralized coordination.

Conventional transaction protocols cannot be easily
combined with inconsistent replication. IR only guaran-
tees that successful operations execute at a majority of
replicas; however, replicas can execute operations in dif-
ferent orders and can be missing any operation at any
time. To support IR’s weak consistency model, TAPIR
integrates several novel techniques:

• Loosely synchronized clocks for optimistic transac-
tion ordering at clients. TAPIR clients schedule trans-
actions by proposing a transaction ordering, which is
then accepted or rejected by TAPIR’s replicated stor-
age servers.

• New use of optimistic concurrency control to de-
tect conflicts with only a partial transaction history.
TAPIR servers use quorum intersection with opti-
mistic concurrency control to ensure that any transac-
tions that violate the linearizable transaction ordering
are detected and aborted by at least one server.

• Multi-versioning for executing transactions out-of-
order. TAPIR servers use multi-versioned storage to
install updates out-of-order and still converge on a
single, consistent storage state.

We implement TAPIR in a new distributed transac-
tional key-value store called TAPIR-KV, which supports
linearizable ACID transactions over a partitioned set of
keys. We compare TAPIR-KV’s protocol to several con-
ventional transactional storage systems, including one
based on the Spanner system, and a non-transactional
key-value store with eventual consistency. We find that
TAPIR-KV reduces commit latency by 50% and in-
creases throughput by more than 2x compared to stan-
dard systems and achieves performance close to that of
the system with eventual consistency.

In this paper, we make the following significant con-
tributions to our understanding of designing distributed,
replicated transaction systems:

• We define inconsistent replication, a new replication
technique that provides fault-tolerance without con-
sistency. (Section 3)

• We design TAPIR, a new distributed transaction pro-
tocol that provides transactions with strong consis-
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Figure 1: Architecture of a distributed transactional storage
system using replication. Distributed transaction protocols co-
ordinate transactions across partitioned data, or shards. They
typically consist of two components: (1) an atomic com-
mitment protocol like two-phase commit to coordinate dis-
tributed transactions across shards and (2) a concurrency con-
trol mechanism like strict two-phase locking to schedule trans-
actions within each shard. A replication protocol with strong
consistency like Paxos is responsible for keeping replicas in
each shard synchronized.

tency using replication with no consistency. (Sections
4–6)

• We design and evaluate TAPIR-KV, a key-value store
that uses inconsistent replication and TAPIR to pro-
vide high-performance transactional storage. (Sec-
tion 7)

2. Background

Replication protocols have become an important com-
ponent in distributed storage systems. While classic
storage systems use local disk for durability, modern
storage systems commonly incorporate replication for
better fault-tolerance and availability. Some new sys-
tems [35, 41] replace on-disk storage altogether with
in-memory replication.

Replicated, transactional storage systems must imple-
ment both a distributed transaction protocol and a repli-
cation protocol. Liskov [27] and Gray [17] described
one of the earliest architectures for these systems that
is still used today many systems [3, 8, 15, 19, 27, 36].
This architecture places the distributed transaction pro-
tocol on top of the replication protocol, as shown in Fig-
ure 1. Other alternatives have been proposed as well
(e.g., Replicated Commit [30]).

Conventional transaction protocols [4] assume the
availability of an ordered, fault-tolerant log. This or-
dered log abstraction is easy to provide with disk; in
fact, sequential writes are more efficient for disk-based
storage than random writes. Replicating this log abstrac-
tion is more complicated and expensive. To enforce a
serial ordering of operations to the replicated log, trans-
actional storage systems must use a replication protocol
with strong consistency, like Paxos [21], Viewstamped
Replication (VR) [34] or virtual synchrony [5].
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Replication protocols with strong consistency present
a fundamental performance limitation for storage sys-
tems. To enforce a strict serial ordering of operations
across replicas, they require cross-replica coordination
on every operation. To avoid additional coordination
when replicas disagree on operation ordering, most im-
plementations use a designated leader to decide opera-
tion ordering and coordinate each operation. This leader
presents a throughput bottleneck, while cross-replica co-
ordination adds latency.

Combining these replication protocols with a dis-
tributed transaction protocol results in a large amount of
complex distributed coordination for transactional stor-
age systems. Figure 2 shows the large number of mes-
sages needed to coordinate a single read-write transac-
tion in a system like Spanner. Significant work [23, 25,
31] has been done to reduce the cost of these replica-
tion protocols; however, much of it centers on commu-
tative operations [6, 22, 32] and do not apply to general-
purpose transaction protocols.

Maintaining the ordered log abstraction means that
replicated transactional storage systems use expensive
distributed coordination to enforce strict serial ordering
in two places: the transaction protocol enforces a serial
ordering of transactions across data partitions or shards,
and the replication protocol enforces a serial ordering
of operations within a shard. TAPIR eliminates this
redundancy and its associated performance cost. As a
result, TAPIR is able avoid the performance limitations
of consistent replication protocols.

Conventional transaction protocols depend on opera-
tions to the log to determine the ordering of transactions
in the system, so they cannot easily support a replication
protocol without strong consistency. TAPIR carefully
avoids this constraint to support inconsistent replication.
Section 4 discusses some of the challenges that we faced
in designing TAPIR to enforce a strict serial ordering of
transactions without a strict serial ordering of operations
across replicas.

3. Inconsistent Replication

The main objective of TAPIR is to build a protocol for
consistent, linearizable transactions on top of a replica-
tion layer with no consistency guarantees. To achieve
this, we must carefully design the weak guarantees of
the replication protocol to support a higher-level pro-
tocol with stronger guarantees. This section defines in-
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Figure 2: Example read-write transaction using two-phase
commit, Viewstamped Replication and strict two-phase lock-
ing. Each zone represents an availablity region, which could
be a cluster, datacenter or geographic region. Each shard holds
a partition of the data stored in the system and is replicated
across zones for fault-tolerance. For each read-write trans-
action, there is a large amount of distributed coordination.
The transaction protocol must coordinate reads with the des-
ignated leader in each shard to acquire locks. To commit a
transaciton, the transaction protocol coordinates across shards
and then the replication protocol must coordinate within each
shard.

consistent replication, a new replication protocol with
fault-tolerance, but no consistency guarantees.

3.1 IR Overview

Inconsistent replication provides unordered, fault-tolerant
operations using a state machine replication model. Ap-
plications invoke operations through IR for fault-tolerant
execution across replicas, and replicas execute opera-
tions in the order they receive them. Operations might
be the puts and gets of a replicated key-value storage
system or the prepares and commits of a transactional
system. Unlike typical state machine replication, in-
consistent replication treats application operations as
unordered. Each replica executes operations in a differ-
ent order; thus, unless all operations are commutative,
replicas will be in an inconsistent state.

Because IR replicas are inconsistent and execute op-
erations in different orders, IR does not expect replicas
to always return the same result. Executing an opera-
tion at enough replicas to provide fault-tolerance (e.g.,
f + 1 replicas to survive f simultaneous failures) does
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not ensure that the results from each replica will agree.
Therefore, IR provides two types of guarantees: (1) fault-
tolerance for an operation and (2) both consensus and
fault-tolerance for an operation result. For example, IR
must ensure consensus and fault-tolerance for TAPIR op-
erations whose result determines transaction ordering.

We define two types of IR operations with these differ-
ent guarantees. When applications invoke inconsistent
operations, IR only ensures that the operation will not
be lost for up to f simultaneous failures. When appli-
cations invoke consensus operations, IR preserves the
operation and the result given by the majority of the
replicas if enough replicas return the same result. While
both operation types are fault-tolerant, consensus opera-
tions serve as the basic block in satisfying applications’
consistency guarantees. TAPIR prepares are consensus
operations, while commits and aborts are inconsistent
operations.

IR provides these guarantees for up to f simultane-
ous server failures and any number of client failures. IR
supports only fail-stop failures, not Byzantine faults or
actively malicious servers. We assume an asynchronous
network where messages can be lost or delivered out of
order; however, we assume that messages sent repeat-
edly will be eventually delivered if the replica is up.

IR does not rely on synchronous disk writes; it en-
sures guarantees are maintained even if clients or repli-
cas lose state on failure. This property allows IR to pro-
vide better performance, especially within a datacenter,
compared to Paxos and its variants, which require syn-
chronous disk writes and recovery from disk on failure.
IR also provide better fault-tolerance because this prop-
erty allows it to tolerate disk failures at replicas.

3.2 IR Protocol

Figure 3 summarizes the IR interfaces and state at
clients/replicas. Applications invoke their operations
with a Client Interface call. IR clients communicate
with IR replicas to execute operations and collect their
responses. IR uses 2f + 1 replicas to tolerate f simul-
taneous failures. Using a larger group size to tolerate
fewer than f failures is possible, but does not make
sense because it requires a larger quorum size.

Inconsistent operations - replicated but unordered -
return every result from all replicas that execute the oper-
ations. Successful inconsistent operations have executed
at enough replicas to ensure that they are fault-tolerant.

Client Interface:
InvokeInconsistentOperation(op)→results
InvokeConsensusOperation(op)→finalized,result

Client State:
• client id - unique identifier for the client
• operation counter - Number of sent operations

Replica Upcalls:
Execute(op)→result
Recover(op)
Recover(op,res)

Replica State:
• state - denotes current replica state which is ei-

ther NORMAL (processing operations) or VIEW-
CHANGING (participating in recovery)

• record - unordered set of operations and their results

Figure 3: Summary of inconsistent replication interfaces and
client/replica state.

Successful consensus operations have executed with
the same result at a majority of replicas. A successful
consensus operation is considered finalized when the
client received enough matching results to also ensure
that the result of the operation is not lost (i.e. the oper-
ation was executed with the same outcome at a super-
majority of replicas). Consensus operations may fail be-
cause the replicas do not return enough matching results,
e.g., if there are conflicting concurrent operations.

Each client keeps an operation counter, which, com-
bined with the client id, uniquely identifies operations
to replicas. Each IR replica keeps an unordered record
of executed operations.

IR uses four sub-protocols - operation processing,
replica recovery, client recovery and group membership
change. This section details the first two only; the last
two are identical to the VR [28] protocol.

3.2.1 Operation Processing Protocol

To begin, we describe IR’s normal-case operation pro-
cessing protocol without failures. Due to IR’s weak guar-
antees, replicas do not communicate on each operation.
Instead, the IR client simply contacts IR replicas and
collects their responses. The protocol follows:
1. The client sends 〈REQUEST, id, op〉 to all replicas,

where id is the message id (a tuple of the client id
and message counter) and op is the operation.
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2. Each replica writes op and its result to its record, then
responds 〈REPLY, id, res〉, where res is the result
of the operation.

3. For inconsistent operations, once the client receives
f +1 responses from replicas, it returns all results to
the application.

4. For consensus operations, once the client receives
f + 1 responses from replicas with matching results,
it returns the result to the application. Once the client
receives d32fe+1 matching responses, it finalizes the
result.

IR clients retry inconsistent operations until they suc-
ceed and consensus operations until they finalize or time
out. Replicas that receive operations they have already
executed can safely ignore them. A successful opera-
tion requires at least a single round-trip to f + 1 repli-
cas. However, IR needs d32fe + 1 matching responses
to finalize a consensus operation. Otherwise, IR cannot
guarantee the majority result will persist at the majority
across failures. This quorum requirement is the same as
Fast Paxos [23] and related protocols because IR must
be able to determine both that a consensus operation
succeeded and what was the result the replicas agreed
upon.

Consensus operations can time out, either because
the group does not reach consensus or because more
than bf2 c replicas are unreachable. TAPIR is designed
to cope with this using a slow path that only relies on
inconsistent operations.

3.2.2 IR Recovery Protocol

IR does not rely on synchronous disk writes, so failed
replicas may lose their records of previously executed
operations. IR’s recovery protocol is carefully designed
to ensure that a failed replica recovers any operation that
it may have executed previously and can still succeed.

Without this property, successful IR operations could
be lost. For example, suppose an IR client receives a
quorum of responses and reports success to the applica-
tion. Then, each replica in the quorum fails in sequence
and each lose the operation, leading to the previously
successful operation being lost by the group.

Ensuring this property is challenging because IR does
not have a leader like VR. The VR leader tracks every
operation that the group processes and every response
from replicas. While recovering IR replicas can poll a
quorum of other replicas to find successful operations,
they cannot poll all of the clients to find operations they

may have executed and their response. To deal with this
situation, the recovering replica must instead ensure any
operation that it executed but now cannot recover does
not succeed.

For this purpose, we introduce viewstamps into the IR
protocol. Each replica maintains a current view number
and includes this view number in responses to clients2.
Replicas also divide their records into views based on the
view number when the replica executed the operation.
Each IR replica can be in one of two states: either
NORMAL or VIEW-CHANGING. IR replicas only process
operations in the NORMAL state.

For an operation to be considered successful (or final-
ized), the IR client must receive responses with matching
view numbers. On recovery, failed replicas force a view
change, ensuring that any operation that has not already
achieved a quorum in the previous view will not succeed.
The recovery protocol follows:
1. The recovering replica sends 〈START-VIEW-CHANGE〉

to all replicas.
2. Each replica that receives a START-VIEW-CHANGE

increments its current view number by 1 and then
responds with 〈DO-VIEW-CHANGE, r, v〉, where r
is its unordered record of executed operations, and v
is the newly updated view number. The replica sets
its state to VIEW-CHANGING and stops responding to
client requests.

3. Once the recovering replica receives f +1 responses,
it updates its record using the received records:
(a) For any consensus operation with matching results

in at least df2 e + 1 of the received records (i.e.,
operations that were finalized), the replica calls
Recover(op,res), where res is the operation with
the majority result. It then adds the operation to
its record.

(b) For any consensus operation in a received record
without a matching majority result (i.e., successful
but not finalized), the replica recovers the opera-
tion using Recover(op) without a result. It then
adds the operation to its record.

(c) For any inconsistent operation in a received record,
the replica calls Recover(op) and adds the opera-
tion to its record.

2 If clients receive responses with different view numbers, they send
back the largest view number received. This ensures that replicas
are not forever stuck in different views, leaving the group unable to
process operations.
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4. The replica then sends a 〈START-VIEW, vnew〉, where
vnew is the max of the view numbers from other repli-
cas.

5. Any replica that receives START-VIEW checks whether
vnew is higher than or equal to its current view num-
ber. If so, the replica updates its current view number
and enters the NORMAL state; otherwise, it stays in
its current state. The replica then always replies with
a 〈START-VIEW-REPLY, vnew〉 message.

6. After the recovering replica receives f START-VIEW-
REPLY responses, it enters the NORMAL state and
resumes processing client requests. At this point, the
replica is considered to be recovered.

If a non-recovering replica receives a START-VIEW-
CHANGE without a matching START-VIEW, after a time-
out it assumes the role of the recovering replica to force
the group into the new view and back into the NORMAL

state to continue processing operations.

3.3 Correctness

We give a brief sketch of correctness. Correctness re-
quires that (1) successful operations are not lost, and (2)
finalized consensus operation results are not lost. To en-
sure these guarantees, we show that IR maintains the
following properties, to tolerate up to f simultaneous
failures out of a total of 2f + 1 replicas:
P1. Successful operations are always in at least one

replica record out of any set of f + 1 replicas.
P2. Finalized consensus operation results are always in

the records of a majority out of any set of f + 1
replicas.
In the absence of failures, the operation processing

protocol ensures that any successful operation is in the
record of at least f + 1 replicas and at least d32fe + 1
replicas executed any finalized consensus operation and
recorded the same result. P1 follows from the fact that
any two sets of size f + 1 share at least one replica. P2
follows from the fact that any two sets of sizes d32fe+1

and f + 1, respectively, share at least df2 e+ 1 replicas,
which constitute a majority of any set of size f + 1.

However, since replicas can lose records on failures,
we must prove that the recovery protocol maintains these
properties after failures as well. The recovery protocol
ensures the following necessary properties will be met
after recovery:
P3. A majority of the replicas, including the recovered

replica, are in a view greater than that of any previ-
ously successful operation.

P4. The recovered replica gets all operations that were
successful in previous views and any finalized results
from previous views. Any ongoing operations are
never successful.
These properties are sufficient to ensure the general

properties, P1 and P2, stated above.
P3 is ensured by the view change protocol. Since at

least 1 of the f+1 replicas that respond to START-VIEW-
CHANGE must have the maximum view number in the
group, and since every replica that responds to a START-
VIEW-CHANGE will increment its view, the new view
must be larger than any previous view.

P4 is ensured because any operations that were suc-
cessful in views lower than the new view must appear
in the joined records of any f + 1 replicas by quorum
intersection. No further operations will become success-
ful in any previous view because at least f + 1 replicas
have incremented their view numbers prior to sending
a DO-VIEW-CHANGE message. Any in-progress opera-
tions will therefore be unable to achieve a quorum. The
equivalent holds for consensus operations with a final-
ized result because the quorum intersection for these is
at least df2 e+ 1.

3.4 Building Atop IR

Due to its weak consistency guarantees, IR is an efficient
protocol for replication. It has no leader to order oper-
ations, which increases throughput, and it has no cross-
replica coordination, which reduces latency for each op-
eration. In this respect, IR resembles protocols like Gen-
eralized Paxos [22] and EPaxos [32], which also do not
require ordering for commutative operations. However,
the goal in these protocols is still to maintain replicas
in a consistent state while executing operations in differ-
ent orders. IR has a completely different goal: to ensure
fault-tolerance for operations and their results instead of
consistent replication.

With replicas in inconsistent states, applications or
protocols built on top of IR may be inconsistent, as
well. IR does not attempt to synchronize inconsistent
application state; the application must reconcile any
inconsistencies caused by replicas executing operations
in different orders. Section 4 describes how TAPIR does
so. In addition, IR offers weak liveness guarantees for
consensus operations.

For checkpointing purposes, replicas can periodically
synchronize or gossip to find missed operations; how-
ever, this is not necessary for correctness. Without a
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leader, no replica is guaranteed to have all of the success-
ful operations. Thus, to get a complete view, applications
must join the records of f + 1 replicas.

By carefully selecting the quorum size for inconsis-
tent and consensus operations, IR provides sufficient
fault-tolerance guarantees to be able to construct a
higher-level protocol with strong consistency. Other
systems could use IR with different quorum sizes to
provide weaker consistency guarantees. For example,
Dynamo could use IR with a quorum of all replicas for
put operations to provide eventual consistency. We took
advantage of this flexibility when building comparison
systems for our evaluation.

4. TAPIR Overview
TAPIR is a distributed transaction protocol that relies on
inconsistent replication. This section describes protocol
and the techniques that TAPIR uses to guarantee strong
consistency for transactions using IR’s weak guarantees.

Figure 4 shows the messages sent during a sample
transaction in TAPIR. Compared to the protocol shown
in Figure 2, TAPIR has three immediately apparent
advantages:
1. Reads go to the closest replica. Unlike protocols

that must send reads to the leader, TAPIR sends reads
to the replica closest to the client.

2. Successful transactions commit in one round-
trip. Unlike protocols that use consistent replication,
TAPIR commits most transactions in a single round-
trip by eliminating cross-replica coordination.

3. No leader needed. Unlike protocols that order op-
erations at a leader, TAPIR replicas all process the
same number of messages, eliminating a bottleneck.

4.1 System Model

TAPIR is designed to provide distributed transactions
for a scalable storage architecture. We assume a sys-
tem that partitions data into shards and replicates each
shard across a set of storage servers for availability and
fault-tolerance. Clients are front-end application servers
located in the same or another datacenter as the storage
servers; they are not end-hosts or user machines. They
can access a directory of storage servers and directly
map data to them using a technique like consistent hash-
ing [18].

TAPIR provides a general storage and transaction in-
terface to clients through a client-side library. Clients
begin a transaction, then read and write during the trans-
action’s execution period. During this period, the client
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Figure 4: TAPIR protocol.

is free to abort the transaction. Once the client finishes
execution, it commits the transaction, atomically and
durably committing the executed operations across all
shards that participated in the transaction. TAPIR en-
sures a linearizable ordering and fault-tolerance for the
committed transaction for up to f simultaneous server
failures and any client failures.

4.2 Protocol Overview

Figure 5 shows TAPIR’s interfaces and state at both
the client and the replica. Applications perform reads
and writes within a transaction and then durably and
atomically commit them.

Each TAPIR client supports one ongoing transaction
at a time. In addition to the client’s client id, the client
stores the state for the ongoing transaction, including
the transaction id and read and write set. TAPIR clients
communicate with TAPIR replicas to read, commit, and
abort transactions. TAPIR executes Begin operations
locally and buffers Write operations at the client until
commit; these operations need not contact replicas.

TAPIR replicas are grouped into shards; each shard
stores a subset of the key space. Read operations are sent
directly to any TAPIR replica in the appropriate shard
because they do not require durability. TAPIR uses IR to
replicate Prepare, Commit and Abort operations across
replicas in each shard participating in the transaction
(i.e., holding one of the keys read or written in the
transaction).
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Client Interface:
Begin()
Read(key)→object
Write(key,object)
Commit()
Abort()

Client State:
• client id - Unique client identifier
• transaction - ongoing transaction id, read set, write

set

Replica Interface:
Read(key)→object,version
Read(key,version)→object
Prepare(transaction,timestamp)→
〈PREPARE-OK||ABSTAIN||ABORT||RETRY,timestamp〉
Commit(transaction,timestamp)
Abort(transaction,timestamp)

Replica State:
• prepare transactions - list of transactions that this

replica is prepared to commit
• transaction log - log of committed and abort transac-

tions in timestamp order
• store - versioned data store
• log table - table of transactions for which this replica

group is the backup coordinator; includes the cur-
rently designated coordinator and the outcome of the
transaction

Figure 5: Summary of TAPIR interfaces and client and replica
state.

TAPIR uses timestamp ordering for transactions. A
transaction’s timestamp reflects its place in the global
linearizable order. TAPIR replicas keep transactions in
a transaction log in timestamp order; they also maintain
a multi-versioned data store, where each version of an
object is identified by the timestamp of the transaction
that wrote the version. TAPIR replicas serve reads from
the versioned data store and maintain the transaction log
for synchronization and checkpointing. Like other two-
phase commit protocols, TAPIR replicas maintain a list
of prepared transactions.

TAPIR uses two-phase commit (2PC) with optimistic
concurrency control (OCC) to commit transactions at
a single timestamp. The TAPIR client also serves as
the two-phase commit coordinator. TAPIR uses an op-
timistic ordering approach for committing transactions,
similar to CLOCC [1]. Clients choose a propose times-
tamp for the committing transaction in Prepare. TAPIR

replicas then use OCC to validate that the transaction is
consistent with the proposed timestamp.

Unlike other two-phase commit protocols, TAPIR
replicas can respond to Prepare operations in four ways.
PREPARE-OK and ABORT are the usual two-phase com-
mit responses, indicating that no conflicts were found
or a conflict with a committed transaction was found,
respectively. The other two responses are designed to re-
duce the number of aborts in TAPIR. ABSTAIN indicates
that the replica cannot prepare the transaction at this
time, which usually occurs when finding a conflict with
a prepared transaction. RETRY indicates that the transac-
tion might succeed if the client uses the retry timestamp
returned with the result.

Prepare is a consensus operation since replicas can
return different results; Commit and Abort are incon-
sistent operations. The latter are carefully designed to
enable TAPIR replicas to consistently commit or abort
transactions at any time.

Because Prepare is a consensus operation, it may
not finalize, meaning the result will not survive failures.
However, TAPIR must still be able to make progress
and eventually commit or abort the transaction. TAPIR
copes with this situation using a slow path, which writes
the transaction outcome to a backup coordinator group
before reporting it to the application. Once TAPIR repli-
cates the outcome across the backup coordinator group,
replicas can determine the result of the Prepare from
the transaction outcome.

4.3 Building TAPIR on an IR Foundation

Numerous aspects of TAPIR are explicitly designed to
cope with inconsistent replication. These design tech-
niques make it possible for TAPIR to provide lineariz-
able transactions from IR’s weak guarantees. TAPIR
must: (1) order transactions using unordered operations,
(2) detect conflicts between transactions with an incom-
plete transaction history, and (3) reconcile different oper-
ation results from inconsistent replicas and application
state at inconsistent replicas. This section highlights how
TAPIR tackles these challenges.

4.3.1 Ordering Transactions.

The first challenge is how to order transactions when
the replication layer provides only unordered operations.
Conventional transaction protocols use the order of op-
erations at storage servers to order transactions, but this
cannot work with inconsistent replication.
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Instead, TAPIR uses an optimistic transaction order-
ing technique, similar to the one employed in CLOCC [1],
where clients propose timestamps to order their trans-
actions. To help clients pick timestamps, TAPIR uses
loosely synchronized clocks. As other work has noted [38],
the Precision Time Protocol (PTP) [39] makes clock
synchronization easily achievable in today’s datacenters.
With hardware support, this protocol can achieve sub-
microsecond accuracy. Even without hardware support,
PTP lets us achieve microsecond accuracy, far less than
TAPIR requires. Across the wide-area, we found that
sub-millisecond accuracy was possible in VMs on the
widely available Google Compute Engine [16].

TAPIR’s performance depends on clients proposing
closely clustered timestamps. Increasing clock skew
increases the latency for committing transactions since
clients must retry their transactions. Retrying does not
force the transaction to re-execute; it incurs only an
additional round-trip to the replicas. As our evaluation
shows, TAPIR is robust even to high clock skews; we
measured a retry rate that was well below 1% even
with clock skews of several milliseconds and a high-
contention Zipf distribution of accesses. As a rough
metric, TAPIR sees no negative performance impact as
long as the clock skew stays within a few percent of the
latency between clients and servers.

It is important to note that TAPIR does not depend on
clock synchronization for correctness, only performance.
This differs from Spanner [8], where consistency guar-
antees can be violated if the clock skew exceeds the un-
certainty bound given by TrueTime. Thus, TAPIR’s per-
formance depends only on the actual clock skew, unlike
Spanner, which must wait for a conservatively estimated
uncertainty bound on every transaction.

4.3.2 Detecting Conflicts.

Conventional distributed transaction protocols use con-
currency control to prevent conflicts between concurrent
transactions. However, most concurrency control proto-
cols check a transaction for conflicts against all previous
transactions. Every TAPIR replica might have a differ-
ent set of transactions, so TAPIR must detect conflicts
between transactions with an incomplete transaction his-
tory.

TAPIR solves this problem using optimistic concur-
rency control and quorum intersection. OCC validation
checks occur between the committing transaction and
one previous transaction at a time. Thus, it not necessary

for a single server to perform all the checks. Since IR
ensures that every Commit executes at at least 1 replica
in any set of f +1 replicas, and every Prepare executes
at at least df2 e replicas in any set of f + 1, at least one
replica will detect any possible OCC conflict between
transactions, thus ensuring correctness.

4.3.3 Reconciling Inconsistency.

TAPIR must reconcile both inconsistent replica state and
inconsistent operation results.

The result of Commit and Abort is the same regardless
of their execution order. The replica state also stays
consistent. For Commit, the replica will always commit
the transaction to the multi-versioned data store using
the transaction timestamp and then log the transaction.
For Abort, the replica will abort the transaction if it is
prepared and then log the transaction.

Both the result and replica state after a Prepare differ
if they are executed in a different order at each replica.
We cope with this inconsistency as follows. First, replica
state diverges only until the replicas all execute the
Commit or Abort, so it is not important to reconcile
replica state. Second, TAPIR manages inconsistent re-
sults by using inconsistent operations in IR. Inconsistent
operations always return the majority result and preserve
that result across failures. Thus, TAPIR can rely on the
majority result to decide whether to commit or abort a
transaction. As a further optimization, TAPIR replicas
give an ABSTAIN result when they are unsure of the out-
come of the conflicting transaction; this prevent transac-
tions from aborting unnecessarily due to inconsistency.

5. TAPIR Protocol

This section details the TAPIR protocol, which provides
linearizable transactions using inconsistent replication.
TAPIR provides the usual atomicity, consistency, isola-
tion and durability guarantees for transactions. It also
supports the strictest level of isolation: external con-
sistency or linearizability. More specificially, TAPIR’s
transaction timestamps reflect an externally consistent
ordering, ensuring that if transaction A commits before
transaction B, then A will have a lower timestamp than
B.

TAPIR provides these guarantees using a transac-
tion processing protocol layered on top of inconsistent
replication. It also relies on inconsistent replication for
replica recovery; however, TAPIR uses a coordinator re-
covery protocol for two-phase commit coordinator fail-
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ures. The remainder of this section describes these pro-
tocols in detail.

5.1 Transaction Processing Protocol

TAPIR clients communicate with TAPIR replicas to co-
ordinate linearizable transactions. TAPIR replicas pro-
cess transactions unless replicas in the shard are in IR
recovery mode. This section describes the protocols for
reading objects in a transaction and then committing.

5.1.1 Read Protocol

TAPIR’s read protocol is identical to other optimistic
concurrency control protocols for sharded multi-versioned
data stores. The TAPIR client sends read requests to any
replica server in the shard for that data object. Its server
returns the latest version of the object along with the
timestamp of the transaction that committed that ver-
sion, which serves as the version ID. The client adds
the key and the version ID to the transaction’s read set.
If the client has previously read the object in the trans-
action, it can retrieve the same version by sending the
version ID and with the read request to the server.

Unlike other optimistic concurrency control proto-
cols, TAPIR servers are inconsistent. Any replica could
miss any transaction at any time. However, the OCC val-
idation process detects any inconsistencies on commit
and the transaction will abort.

5.1.2 Commit Protocol

During the execution period, the TAPIR client accumu-
lates the read and write sets for the transaction. Once the
application decides to commit, TAPIR starts the commit
protocol to find a timestamp at which it can serialize the
transaction’s reads and writes.

The TAPIR client starts the protocol by selecting
a proposed timestamp. Proposed timestamps must be
unique, so clients use a tuple of their local time and
their client id. The TAPIR client serves as the two-
phase commit coordinator, sendind the Prepare with the
proposed timestamp to all participants.

The result of Prepare at each replica depends on
the outcome of the TAPIR validation checks. As noted,
TAPIR validation checks have four possible outcomes.
1. The replica checks for conflicts with other transac-

tions. For each read, it checks that the version remains
valid (i.e. that it has not accepted a write for that
key before the proposed timestamp. For each write,

it checks that it has not accepted a read or write for
that key after the proposed timestamp.3

2. If there are no conflicts, the participant replica adds
the transaction to the list of prepared transactions and
replies PREPARE-OK.

3. If a read conflict exists with a previously committed
transaction, then the participant replica cannot com-
mit the transaction; it sends an ABORT.

4. If a write conflict exists with a previously commit-
ted transaction, the participant replies RETRY with
the timestamp of the conflicting transaction. If the
client retries the transaction at a timestamp after the
conflicting transaction, it may commit.

5. If a conflict exists with a prepared transaction, the
participant replica replies ABSTAIN.
If Prepare succeeds in each participant shard, the

TAPIR client proceeds as follows:
1. If the result is PREPARE-OK at every shard, then the

client waits for IR to finalize the Prepare result. As
an optimization, while it waits, it can begin a slow-
path commit (described below).

2. If the result at any shard is ABORT, then the client
sends Abort to all participants.

3. If the result at any shard is RETRY, then client retries
the transaction with a new proposed timestamp: the
maximum of the returned retry timestamps and the
local time.

4. Otherwise, the client retries the transaction with a
new proposed timestamp.
Once IR declares the Prepare result to be finalized in

every participant shard, the TAPIR client reports the out-
come to the application. If the Prepare times out with-
out finalizing the result in one of the participant shards,
then the TAPIR client must take a slow path to finish
the transaction. If Prepare succeeded with PREPARE-
OK in every shard, the client commits the transaction,
otherwise it aborts. To complete the transaction, the
client first logs the outcome of the transaction to the
backup coordinator group. It then notifies the client, and
sends a Commit or Abort to all participant replicas. The
client uses the same slow path to abort the transaction
if Prepare does not succeed in any shard because there
were not enough matching responses.

3 These conflict checks ensure serializability and external consis-
tency; they could be relaxed slightly (e.g., following the Thomas
Write Rule [42]) for higher performance if external consistency is
not required.
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5.1.3 Out-of-order Execution

Since TAPIR relies on inconsistent replication, it must
be able to execute operations out-of-order. For exam-
ple, TAPIR may receive the Commit for a transaction
before the Prepare. Thus, in addition to normal-case ex-
ecution, TAPIR performs the following checks for each
operation:

• Prepare: If the transaction has been committed or
aborted (logged in the transaction log), ignore. Oth-
erwise, TAPIR validation checks are run.

• Commit: Commit the transaction to the transaction log
and update the data store. If prepared, remove from
prepared transaction list.

• Abort: Log abort in the transaction log. If prepared,
remove from prepared list.

5.2 Recovery Protocols

TAPIR supports up to f simultaneous failures per shard
as well as arbitrary client failures. Because it uses the
client as the two-phase commit coordinator, TAPIR must
have protocols for recovering from both replica and
coordinator failures.

5.2.1 Replica Recovery

On replica recovery, IR recovers, and executes opera-
tions in an arbitrary order, and gives any finalized con-
sensus operation the result. TAPIR already supports out-
of-order execution of Commit and Abort, so it need not
implement additional support for these operations.

For finalized Prepare operations, TAPIR skips the
validation checks and simply prepares any transaction
where the finalized result was PREPARE-OK.

For successful, but unfinalized Prepare operations,
TAPIR adds the transaction to the prepared list, but it
returns ABSTAIN if queried about the transaction. These
transactions exist in an in-between state until either com-
mitted or aborted. TAPIR does this because the transac-
tion might still commit; however, the recovering replica
does not know if it returned PREPARE-OK originally, so
it cannot participate in committing the transaction.

5.2.2 Coordinator Recovery

TAPIR uses the client as coordinator for two-phase com-
mit. Because the coordinator may fail, TAPIR uses a
group of 2f + 1 backup coordinators for every transac-
tion. Coordinator recovery uses a coordinator change
protocol, conceptually similar to Viewstamped Replica-
tion’s view change protocol. The currently active backup
coordinator is identified by indexing into the list with a

coordinator-view number; it is the only coordinator per-
mitted to log an outcome for the transaction.

If the current coordinator is suspected to have failed,
a backup coordinator executes a view change in the
coordinator group. In doing so, it receives any slow-path
outcome that was logged by a previous coordinator. If
such an outcome has been logged, the new coordinator
must follow that decision; it notifies the client and all
replicas in every shard.

If the new coordinator does not find a logged outcome,
it sends a CoordinatorChange(transaction, view-num)
message to all replicas in participating shards. Upon re-
ceiving this message, replicas agree not to process mes-
sages from the previous coordinator; they also reply to
the new coordinator with any previous Prepare result
for the transaction. Once the CoordinatorChange is suc-
cessful (at f+1 replicas in each participating shard), the
new coordinator determines the outcome of the transac-
tion in the following way:

• If any replica in any shard has recorded a Commit or
Abort, it must be preserved.

• If any shard has less than df2 e + 1 PREPARE-OK

responses, the transaction could not have committed
on the fast path, so the new coordinator aborts it.

• If at least df2 e + 1 replicas in every shard have
PREPARE-OK responses, the outcome of the trans-
action is uncertain: it may or may not have com-
mitted on the fast path. However, every conflicting
transaction must have used the slow path. The new
coordinator polls the coordinator (or backup coordi-
nators) of each of these transactions until they have
completed. If those transactions committed, it aborts
the transaction; otherwise, it sends Prepare opera-
tions to the remaining replicas until it receives a total
of f + 1 PREPARE-OK responses and then commits.

The backup coordinator then completes the transaction
in the normal slow-path way: it logs the outcome to the
coordinator group, notifies the client, and sends a Commit
or Abort to all replicas of all shards.

5.3 Correctness

We give a brief sketch of how TAPIR maintains the
following properties given up to f failures in each
replica group and any number of client failures:

• Isolation. There exists a global linearizable ordering
of committed transactions.

• Atomicity. If a transaction commits at any participat-
ing shard, it commits at them all.
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• Durability. Committed transactions stay committed,
maintaining the original linearizable order.

Isolation. Because Prepare is a consensus operation,
a transaction X can be committed only if f +1 replicas
return PREPARE-OK. We show that this means the trans-
action is consistent with the serial timestamp ordering
of transactions.

If a replica returns PREPARE-OK, it has not prepared
or committed any conflicting transactions. If a conflict-
ing transaction Y had committed, then there is one com-
mon participant shard where at least f + 1 replicas re-
sponded PREPARE-OK to Y . However, those replicas
would not return PREPARE-OK to X . Thus, by quorum
intersection, X cannot obtain f + 1 PREPARE-OK re-
sponses.

By the same reasoning, ABORT is just an optimization.
If a replica detects a conflict with committed transaction
Y , then it may safely return ABORT and know that at
least f + 1 replicas will give matching results. At least
f+1 replicas must have voted to commit Y , and at least
f + 1 replicas processed the Commit operation. Thus, it
knows that X will never get a PREPARE-OK result.

This property remains true even in the presence
of replica failures and recovery. IR ensures that any
Prepare that succeeded with a PREPARE-OK persists
for up to f failures. It does not ensure that the result is
maintained. However, our recovery protocol for Prepare
without a result is conservative and keeps the transaction
in the prepared state in case it commits. This ensures
that other new transactions that conflict cannot acquire
the necessary quorum.

Atomicity. A transaction commits at a replica only
if a coordinator has sent the Commit operation after a
majority of replicas in each participating shard have
agreed to Prepare the transaction. In this case, the
coordinator will send Commit operations to all shards.

If the coordinator fails after deciding to commit, the
coordinator recovery protocol ensures that the backup
coordinator makes the same decision. If the previous co-
ordinator committed the transaction on the slow path, the
commit outcome was logged to the backup coordinators;
if it was committed on the fast path, the new coordina-
tor finds the quorum of PREPARE-OK results by polling
f + 1 replicas in each shard.

Durability. If there are no coordinator failures, a trans-
action is eventually finalized through an IR inconsistent
operation (Commit/Abort), which ensures that the deci-

sion is never lost. As described above, for coordinator
failures, the coordinator recovery protocol ensures that
the coordinator’s decision is not lost.

6. TAPIR Extensions
We now describe two useful extensions to TAPIR.

6.1 Read-only Transactions.

Since it uses a multi-versioned store, TAPIR easily sup-
ports interactive read-only transactions at a snapshot.
However, since TAPIR replicas are inconsistent, it is
important to ensure that: (1) reads are up-to-date and
(2) later write transactions do not invalidate the reads.
To achieve these properties, TAPIR replicas keep a read
timestamp for each object.

TAPIR’s read-only transactions have a single round-
trip fast path that sends the Read to only one replica. If
that replica has a validated version of the object where
the write timestamp precedes the snapshot timestamp
and the read timestamp follows the snapshot timestamp
we know that the returned object is valid, because it is
up-to-date, and will remain valid, because it will not be
overwritten later. If the replica lacks a validated version,
TAPIR uses the slow path and executes a QuorumRead

through IR as an inconsistent operation. A QuorumRead

updates the read timestamp, ensuring that at least f + 1
replicas do not accept writes that would invalidate the
read.

The protocol for read-only transactions follows:
1. The TAPIR client chooses a snapshot timestamp for

the transaction; for example, the client’s the local
time.

2. The client sends Read(key,version), where key is what
the application wants to read and version is the snap-
shot timestamp.

3. If the replica has a validated version of the object, it
returns it. Otherwise, it returns a failure.

4. If the client was not able to get the value from the
replica, the client executes a QuorumRead(key,version
through IR as an inconsistent operation.

5. Any replica that receives QuorumRead returns the
latest version of the object from the data store. It
also writes the read to the transaction log and updates
the data store to ensure that it will not prepare for
transactions that would invalidate the read.

6. The client returns the object with the highest times-
tamp to the application.
As a quick sketch of correctness, it is always safe to

read a version of the key that is validated at the snapshot
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timestamp. Because the write timestamp for the version
is before the snapshot timestamp, the version was valid
at the snapshot timestamp, and because the read times-
tamp is after the snapshot timestamp, the version will
continue being valid at the snapshot timestamp. If the
replica does not have validated version, the replicated
QuorumRead ensure that both that the client gets the lat-
est version of the object (because it must be at at least 1
of any f + 1 replicas) and that a later write transaction
cannot overwrite the version (because the QuorumRead

is replicated at f + 1 replicas).
Since TAPIR also uses loosely synchronized clocks,

TAPIR can be combined with Spanner’s algorithm for
providing linearizable read-only transactions. Like Span-
ner, this combination would require waits at the client,
who acts as the coordinator in TAPIR, for the uncertainty
bound and only provides linearizability guarantees as
long as the clock skew does not exceed that bound.

6.2 Synchronization.

Individual TAPIR replicas may be missing some com-
mitted transactions. While these “holes” do not affect
TAPIR’s correctness, storage systems using TAPIR may
prefer to have a full transaction log at certain points to
checkpoint state to durable storage. Synchronization in
TAPIR requires that replicas write sync timestamps into
their transaction log, and track their latest sync point.
Replicas do not accept prepares for any transaction with
a timestamp before the sync point.

TAPIR implements synchronization by sending a To
ensure that Sync and FinishSync operations are fault-
tolerant, we send then through IR as inconsistent opera-
tions. Since IR can reorder Sync and FinishSync opera-
tions, we send timestamp ranges for the synchronization
with each operation.
1. A synchronizing replica sends Sync(start, end) to the

replica group through IR, where tstart − tend is the
portion of time the replica would like to have the full
log. For example, the replica can pick start to be the
its local time at the last sync and end to be its current
time.

2. Other replicas execute Sync by returning all of their
transactions with timestamps between start and end.
If t end is bigger than the replica’s last sync point,
then the replica updates its sync point to end and
stops taking transaction with smaller timestamps.

3. Once the synchronizing replica has received f re-
sults from IR, the replica joins the transaction logs

with its own and sends the complete log back in
FinishSync(start,end,log). It updates its transaction
log and data store by committing any transaction in
log not already its log.

4. Any replica that receives FinishSync updates their
sync point if it has not already. The replica also
updates its own transaction log and data store by
committing every transaction in log that is not already
in its log.

At this point, every replica that participated in the syn-
chronization and has a new sync timestamp in its log is
guaranteed to have all of the transactions that the group
committed between start and end.

6.3 Serializability.

TAPIR is somewhat limited in its ability to accept trans-
actions out of order because it provides linearizability.
Thus, TAPIR replicas cannot accept writes that are older
than the last write that they accepted for the same key
and they cannot accept reads of older versions of the
same key.

However, if TAPIR’s guarantees are slightly weak-
ened to provide serializability, TAPIR can then accept
proposed timestamps any time in the past as long as they
respect serializable transaction ordering. This optimiza-
tion requires tracking the timestamp of the transaction
that last read to each version, as well as the timestamp
of the transaction that wrote each version.

With this optimization, TAPIR can now accept: (1)
reads of past versions, as long as the read timestamp
is before the write timestamp of the next version, and
(2) writes in the past (Tomas Write Rule), as long as
the write timestamp is after the read timestamp of the
previous version and before the write timestamp of the
next version.

6.4 Synchronous log writes.

Given the ability to synchronously log to durable storage
(e.g. hard disk, NVRAM), we can reduce the quorum
requirements for TAPIR. As long as we can recover the
log after failures, we can reduce the replica group size
to 2f + 1 and reduce all consensus and synchronization
quorums to f + 1.

6.5 Retry Timestamp Selection.

A client can increase the likelihood that the participant
replicas will accept its proposed timestamp by proposing
a very large timestamp, as this decreases the chance that
the participant replicas have already accepted a higher
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timestamp. Thus, to decrease the chances that clients
will have to retry forever, clients can exponentially in-
crease their proposed timestamp on each retry.

6.6 Tolerating Very High Skew.

If there is significant clock skew between servers and
clients, TAPIR can use waits at the participant replicas
to decrease the likelihood that transactions will arrive
out of timestamp order. On receiving each prepare mes-
sage, the participant replica can wait (for the error bound
period) to see if other transactions with smaller times-
tamps arrive. After the wait, the replica can process the
transaction in timestamp order with respect to the other
transactions that have arrived. This wait increases the
chances that the participant replica will receive trans-
action in timestamp order and decreases the number of
transactions that it will have to reject for arriving out of
order.

7. Evaluation
In order to evaluate the effectiveness of TAPIR, we
measure an implementation of TAPIR against several
conventional designs of both transactional and weakly
consistent storage systems. Our evaluation compares
and analyzes their performance in local-area and wide-
area environments.

7.1 Experimental Setup

We implemented TAPIR in a transactional key-value
store, called TAPIR-KV. TAPIR-KV consists of 4,921
lines of C++ code, not including the testing framework.
We also built five comparison systems and a work-
load generator based on the Retwis [24] benchmark.
We ran our experiments in three testing environments:
single cluster, single datacenter and wide-area, cross-
datacenter.

Test Systems We compare TAPIR-KV with five sys-
tems:

• Txn-Locking - standard two-phase commit with strict
two-phase locking (S2PL) and Viewstamped Repli-
cation (VR).

• Txn-OCC - standard two-phase commit with opti-
mistic concurrency control (OCC) and VR.

• Span-Locking - our implementation of the Spanner
protocol.

• Span-OCC - our implementation of the Spanner pro-
tocol with OCC, instead of S2PL.

• QWStore - an eventual consistency system with no
transactions (e.g., Cassandra [20], Dynamo [11])

built with new IR operations that implement a read
anywhere, write everywhere policy.

The transactional systems buffer writes at the client until
commit and use the client as the coordinator.

Test Environment We ran our TAPIR experiments
with three setups:

• Single cluster - 10 quad-core servers with 24 GB
RAM, running Ubuntu 12.04 connected to a fat-tree
network with 12 switches.

• Single datacenter - 15 Google Compute Engine VMs
with two cores running Debian 7 in three availability
zones in the same geographic region (US-Central).

• Cross-datacenter - 6 Google Compute Engine VMs
running Debian 7 in three geographic regions (US,
Europe and Asia) connected over the wide-area net-
work.

These three deployments offer round-trip times that
differ by three orders of magnitude: 100 µs, 1 ms and
100-200 ms. For most experiments, we used 3 replicas
per shard with replicas placed across availability zones
or geographic regions.

Within our cluster, we synchronized clocks using
the Linux PTP [39] kernel module without hardware
support. For our two Google Compute Engine deploy-
ments, we use Google’s existing VM clock synchroniza-
tion mechanism. Lacking access to Spanner’s TrueTime
clock skew error bounds, we treated them as negligible
compared to the network latency.

7.2 Latency and Clock Skew Measurements

We first present a profile of our different test environ-
ments. Since TAPIR depends on loosely synchronized
clocks, we measured clock skews within a cluster using
PTP, as well as between Google Compute Engine VMs
around the world. We measure clock skew by sending a
user-level to user-level ping message, with timestamps
taken on either end. We calculate skew by by subtract-
ing the timestamp taken at the destination from rtt

2 and
assuming symmetric latencies.

Within our cluster, the machines had a 150 µs round-
trip time between them and we were able to synchronize
the servers with an average skew of 6 µs using PTP. We
report the average skew because TAPIR’s performance
depends on the average, not worst-case, skew.

Table 1 reports the average skew and latency between
Google Compute Engine’s three geographic regions.
Within each region, we average over the availability
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Table 1: Cluster round-trip times and clock skews between
Google Compute VMs.

Latency (ms) Clock Skew (ms)

US Europe Asia US Europe Asia

US 1.2 111.3 166.5 3.4 1.3 1.86

Europe 111.0 0.8 261.8 2.1 0.1 1.9

Asia 166.7 263.2 10.8 2.6 1.8 .3

zones. Overall, the clock skew is low, demonstrating the
feasibility of synchronizing clocks in the wide area.

Google gives Compute Engine VMs access to Google’s
reliable wide-area network infrastructure. We imple-
ment all communication using UDP and saw few packet
drops and little variation in round-trip time. However,
there was a long tail to the clock skew. The worst case
clock skew that we saw was 27 ms, indicating that Span-
ner may sometimes violate consistency if they find True-
Time error bounds to only rise to 5 ms between synchro-
nizations.

7.3 Microbenchmarks

For the microbenchmarks, we deployed our six test sys-
tems with a single shard with 3 replicas. We use the same
number of replicas for all systems for a fair through-
put comparison, but TAPIR-KV needs replies from all
3 replicas for its fast path commit, while the other trans-
actional storage systems – TXN-LOCK, TXN-OCC,
SPAN-LOCK, SPAN-OCC – only need replies from 2
out of 3 replicas. QWStore must wait for replies from
all replicas for writes.

Our microbenchmark consists of single-key, read-
modify-write transactions with a uniform distribution of
accesses across 1 million keys. This workload stresses
the transactional systems because the short transactions
have high coordination overhead.

Latency. Figure 6 gives latencies for all six systems
deployed in a single cluster, single datacenter and cross-
datacenter. Within a cluster, TAPIR provides transac-
tions at the same cost as the non-transactional QWStore;
both systems require one round trip to read and another
round trip to all replicas to either write or commit the
transaction. The other transaction systems have lower
performance because they need two round-trips to com-
mit, with TXN-OCC being the slowest because it also
needs a round-trip to a timestamp servers.

Cluster Datacenter Wide-area

Read Write Commit

Figure 6: Latency for read-modify-write transaction in our
three test environment. For the wide-area deployment, we
place the leader replica in a different datacenter from the
client.

Moving to VMs in a datacenter, the computation
cost outweighs the communication cost, so TAPIR-KV’s
fewer round-trips have less impact on latency. TAPIR
still matches the performance of QWStore, but, because
the round-trip time is only 1ms between nodes, TAPIR
and QWStore only offer slightly improved performance
over the four transactional storage systems.

With VMs in different datacenters, the communica-
tion cost outweighs the computation cost. For these ex-
periments, we place the leader for the shard in the US
with the clients in Asia. The advantage of OCC com-
pared to locking becomes visible. Being able to read
at the closest replica, rather than having to go to the
leader to acquire locks reduces the cost of the OCC
systems. TAPIR-KV offers better performance than the
other OCC systems because it only needs a single round-
trip to all of the replicas to commit the transaction, com-
pared to two round-trips to the two closest replicas for
the other systems. And again, TAPIR-KV matches the
performance of the non-transactional QWStore.

Throughput. While TAPIR’s latency benefits are re-
duced In our datacenter deployment, TAPIR still pro-
vides throughput benefits. As shown in Figure 7, TAPIR
provides 2.6× the throughput of other transactional sys-
tems because it is leader-less. Each TAPIR-KV replica
processes the same number of messages, so all three
replicas run at peak throughput. In comparison, the other
transactional systems bottleneck on the leader, which
must coordinate replication. We do not show QWStore,
but it provides roughly 2x the throughput of TAPIR. QW-
Store has higher throughput because it does not provide
atomicity.
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Figure 7: Throughput for read-modify-write microbenchmark
deployed in Google VMs in a single datacenter.

7.4 Retwis Experiments

For our application experiments, we deploy 5 shards of
3 replicas using Google Compute VMs. We generate
a synthetic workload based on the Retwis application
and similar to YCSB-T [12]. Retwis is an open-source
Twitter clone designed to use the Redis key-value store.
Retwis has a number of Twitter functions (e.g., add
user, post tweet, get timeline, follow user) that perform
puts and gets on Redis. We treat each function as a
transaction, and generate a synthetic workload based
on the Retwis functions. For example, the FollowUser

transaction has 2 reads and 2 puts. We use 1 million
keys distributed across the 5 shards andvary the access
distribution (e.g., uniform, Zipf) to vary the level of
contention on different keys.

7.4.1 Datacenter Performance

To measure performance within a datacenter, we deploy
our VMs across availability zones in the US-Central
region. All experiments use the Retwis workload with a
Zipf co-efficient of 0.6 to approximate the contention in
real-life workloads.

Latency. Figure 8 reports the average latency for the
FollowUser transaction at peak throughput for the six
systems. Note again that the computation costs outweigh
the communication costs in the datacenter with VMs, so
TAPIR-KV provides less latency benefit than in other en-
vironments. TAPIR-KV still provides lower latency than
other transaction systems, except for SPAN-OCC; how-
ever, SPAN-OCC achieves the same latency as TAPIR-
KV, but with half the peak throughput. QWStore pro-
vides lower latency at higher peak throughput than all of
the transactional systems however because it can avoid
coordinating transactions with two-phase commit.

Throughput. As Figure 9 shows, the peak throughput
for TAPIR-KV is twice that of the other transactional
storage systems because TAPIR-KV does not need a

TX
N
-O
C
C

TX
N
-L
O
C
K

SP
AN

-O
C
C

SP
AN

-L
O
C
K

TA
PI
R

Q
W
ST

O
RE

Figure 8: Latency for FollowUser transaction with Zipf
distribution (coeff=0.6) at peak throughput for each system.

leader to coordinate between replicas in a shard. How-
ever, QWStore achieves twice the throughput of TAPIR-
KV because it does not need to coordinate replicas
within a shard or transactions across shards.

Figure 9: Peak Throughput for Retwis Transactions with Zipf
distribution.

7.4.2 Cross-datacenter experiments

For wide-area experiments, we placed one replica from
each shard in each geographic region. For the systems
that use consistent replication and have a leader, we
fix the location of the leader in the US and move the
client between the US, Europe and Asia. Figure 10 gives
latency results for the FollowUser transaction in the
Retwis workload. As before, we use a Zipf distribution
with a 0.6 co-efficient.

Figure 10: Wide-area latency for FollowUser transaction,
with leader in the US and client in US, Europe or Asia.

When the client shares a datacenter with the leader,
the latency of the other transactional systems is better
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than TAPIR-KV and QWStore. The other transactional
systems are faster because they can commit with a round-
trip to the leader and another replica in the closest geo-
graphic region, while TAPIR-KV must contact all repli-
cas to commit in the fast path. QWStore is the slowest
of all because it does not buffer writes, so it needs a
round-trip to all of the replicas on each of the two write
operations in the FollowUser function.

When the client is in a different datacenter from the
leader, TAPIR-KV provides the best performance of all
of the comparison systems. The locking-based transac-
tional systems suffer because they must go to the leader
for read locks. QWStore has better performance because
it can read at any replica; however, it still takes two
round-trips to write. The OCC-based transactional stor-
age systems provide the best performance in this case;
they all buffer writes and read at a replica in the local
datacenter. However, TAPIR can commit the transaction
in a single round-trip to all replicas, compared to two
round-trips to the two closest replica for the other OCC
systems.

8. Related Work
TAPIR is the first distributed transaction protocol to sup-
port a replication protocol with no consistency guaran-
tees. It uses no writes to disk, no replica leader and no
coordination between replicas on commit to provide ex-
tremely high-performance read-write transactions. This
section discusses other work with similar goals and
mechanisms.

8.1 Replication

Many people [23, 25, 31] have worked on providing effi-
cient replication with strong consistency guarantees. In
particular, significant work has focused on supporting
commutative operations in consistent replication proto-
cols [6, 22, 32]. Commutative operations do not require
a consistent ordering across replicas, so they can execute
without a leader or cross-replica coordination. Inconsis-
tent replication supports only unordered operations, so
all operations commute by definition.

Dynamo [11] and other systems [10, 13, 14, 26, 40,
43] chose replication techniques with weak consistency
guarantees for performance. However, weak consistency
guarantees can be hard to understand and programmers
find them increasingly difficult to use for satisfying
many applications’ complex requirements [8]. TAPIR
offers the best of both worlds: inconsistent replication
provide performance on par with weak consistency sys-

tems, but TAPIR provides strong consistency guarantees
in the form of linearizable transactions to application
programmers.

The inconsistent replication protocol shares many fea-
tures with Viewstamped Replication [34]. Like VR, in-
consistent replication is designed for in-memory repli-
cation without relying on synchronous disk writes. The
possibility of data loss on replica failure, which does not
happen in protocols like Paxos [21] that assume durable
writes, necessitates the use of viewstamps for both repli-
cation protocols. Our decision to focus on in-memory
replication is motivated by the popularity of recent in-
memory systems like RAMCloud [35] and H-Base [41].

8.2 Distributed Transactions

There has been significant work in improving the perfor-
mance of distributed transactions by limiting the trans-
action model [2, 44] or consistency guarantees [29, 40].
This work largely assumes durable writes and does not
consider replication.

Like TAPIR, Granola [9] uses loosely synchronized
clocks; however, it provide higher performance only for
independent transactions and can only be used with a
consistent replication protocol. Other transactional sys-
tems have looked at commutative transactions [19] or
executing transactions out-of-order [33]. TAPIR natu-
rally supports preparing and executing commutative or
non-conflicting transactions in any order due to its use
of optimistic transaction ordering and multi-versioned
storage to support inconsistent replication.

The CLOCC [1] distributed transaction protocol also
uses loosely synchronized clocks for optimistic transac-
tion ordering; however, it did not consider replication.
CLOCC was later combined with VR [27], but does not
achieve the same performance as TAPIR because VR
enforces strong consistency guarantees. Gray and Lam-
port [17] use of Paxos [21] with locking and two-phase
commit has similar performance limitations.

More recently, numerous systems [3, 7, 8, 15, 19,
36, 37, 44] have implemented distributed transactions
with different consistent replication protocols; however,
they are all limited by their need for cross-replica coor-
dination. Spanner [8] uses loosely synchronized clocks
to address latency and throughput limitations in repli-
cated transactional systems for read-only transactions,
but uses a standard protocol for read-write transactions.
Its approach for read-only transactions is complemen-
tary to TAPIR’s high-performance read-write transac-
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tions and the two could be easily combined. Other sys-
tems improve latency for read-write transactions (e.g.,
MDCC [36], Replicated Commit [30] for wide-area en-
vironments) or throughput (e.g., Warp [15] for datacen-
ter environments), none address latency and throughput
for a wide range of environments like TAPIR. TAPIR

9. Conclusion
This paper presented TAPIR, the first distributed trans-
action protocol designed to use inconsistent replication.
TAPIR uses three techniques that use loosely synchro-
nized clocks and the properties of optimistic concur-
rency control and two-phase commit to provide lineariz-
able transactions with inconsistent replication. We de-
signed and built TAPIR-KV, a distributed transactional
key-value store, along with several comparison systems.
Our experiments reveal that TAPIR-KV can lower the
commit latency by 50%, increase throughtput by 2× rel-
ative to conventional transactional storage systems and,
in many cases, can match the performance of a weakly
consistent system without transaction support.
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