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Abstract
Performance tuning has never been more critical in modern
datacenters, where rapid advances in networking and I/O
speeds expose potential bottlenecks in CPUs, memory, and
operating systems. Yet, tuning remains notoriously complex,
brittle, and opaque, especially at the microsecond-scale laten-
cies demanded by modern dataplanes. We argue that there
is a pressing need to unleash the power of machine learning
in datacenter operating systems.
We propose ML-native Dataplane Operating Systems, a

radical design for ML-based performance tuning. Our design
embraces real-time, microsecond-scale ML-based adaptation
as a foundational principle, treating ML not as a byproduct
but as the backbone, to continuously optimize dataplane
performance under dynamic workloads and operating condi-
tions. Our preliminary experiments show that a traditional
static dataplane OS incurs severe queuing delays (over mil-
liseconds) under dynamic and parallel workloads, whereas
our adaptive approach sustains microsecond-scale tail laten-
cies by dynamically tuning OS parameters in response to
runtime signals.

1 Introduction
Performance tuning is a long-standing and critical challenge
in systems [12, 19]. In the datacenter, it has become even
more critical as CPUs become a bottleneck and I/O devices
grow faster and more complex. To meet the rising demand
for low tail latency, terabit networking and microsecond-
scale datapath operating systems are both increasingly wide-
spread [10, 16, 26, 28, 39], and at the same time, highly sensi-
tive to tuning while tuning them remains poorly understood.
Modern hardware has complex performance properties

that make it difficult to even model a datacenter server, let
alone tune it with any confidence. For example, a recent pa-
per on offloading RPC serialization [30] showed that a com-
plex set of factors dictate when offloading performs better
than CPU copies, including cache hierarchies, memory band-
width usage and the device’s address translation hardware.
Manually tuning dataplane OSes for each unique combina-
tion of application and hardware configuration is infeasible
in the face of heterogeneous devices and changing work-
loads.

Applying machine learning to systems has recently gained
significant traction, tackling challenges in areas such as index
structures, resource management, and performance tuning
for components like ECN in networking [2, 6, 8, 17, 24, 25, 38].
Given the inherent complexity of performance tuning in dat-
aplane operating systems, applying ML to this domain rep-
resents a natural progression. However, existing dataplane

operating systems are optimized for the lowest possible la-
tency, not tunability, and thus require a radical rearchitecting
to work well with ML-based tuning.

Moreover, datacenter workloads and resource usage fluctu-
ate at microsecond timescales [15, 21], prompting operators
to colocate multiple tasks per server to maximize CPU effi-
ciency [13, 32, 36, 41]. These tasks also often have diverse
performance objectives such as low tail latency [10, 39] or
high sustained throughput. These conditions give rise to
three unique system-level challenges. First, the system must
complete the entire tuning loop – including detecting sys-
tem conditions, ML inference, and applying tuning decisions
– within the microsecond-scale window. Second, multiple
dataplane instances should “learn” how to coordinate effec-
tively with one another to meet their respective goals. Lastly,
the tuning mechanism must impose minimal performance
overhead on the dataplane.
In this paper, we make the case for ML-native dataplane

operating systems, which are designed with ML-based per-
formance tuning at their core. Existing operating systems
are not designed to take full advantage of the powerful tun-
ing capabilities provided by machine learning models. Many
OSes, including Linux, have far fewer tunable parameters
than they could—or should—relying instead on a multitude
of hard-coded “magic numbers”, described as “disappointing”
by Linux developer Andrew Morton [5]. As a result, there is
no existing framework or wisdom to guide the creation of
a comprehensive tuning space, particularly for optimizing
parameter combinations across multiple OS components.

Moreover, beyond policy-level decisions, OS-level mecha-
nisms are crucial to support ML-driven tuning. For example,
changing DPDK configurations often requires re-initializing
hardware drivers or restarting the entire application and
the associated libOS. Instead, live upgrades or hot patching
mechanisms are essential to avoid disrupting users and to
enable seamless tuning.

Current operating systems do not naturally support deep
integration of ML-based tuning, in part because they are
unfriendly to the training and continuous learning of mod-
els [34]. It is impractical to anticipate all possible workloads
and collect sufficient data to train a model prior to deploy-
ment. Learning techniques such as reinforcement learning
fundamentally rely on high-quality training data and often
struggle with unseen patterns. Unfortunately, such data is
not available and is extremely challenging to gather from
traditional operating systems, particularly after deployment
— precisely when continuous data collection is most needed
to address gaps caused by “unseen” workloads.
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Figure 1. Peak achievable throughput depending on
RX_BATCH_SIZE and the number of parallel flows. Optimal
RX_BATCH_SIZE value is different depending on the number
of parallel flows.

As famously noted by Ilya Sutskever, “We’ve achieved
peak data, and there’ll be no more.” We argue that future
operating systems must take responsibility for generating
high-quality data to enhance model capability. In the do-
main of dataplane OS, the definition of high-quality data
remains elusive. We posit that it must include careful fea-
ture extraction, precise mapping of features to performance
outcomes, and, most importantly, the ability to collect this
data online with practical, low-overhead methods. The cur-
rent approach typically involves ad-hoc tracing, sampling,
and logging added after deployment. This practice often re-
sults in poor data quality, excluding critical insights into the
root causes of performance changes, and incurs significant
overhead, as highlighted in AIOps research [9]. We posit
that a standardized format or protocol for data collection is
essential, marking a pivotal new consideration in OS design.
An ML-native dataplane OS treats ML-based tuning as

the backbone, not as a byproduct. To explore this vision, we
present the design, lay out its guiding principles, and identify
essential open research questions. We design the operating
system to include as many “tuning knobs” as possible across
multiple components, enabling a thorough exploration of
the performance space. Our system is designed with the
following principles in mind: Supporting multi-granularity
and cross-component tuning, generating meaningful data,
adapting to dynamic workloads, and ensuring reliable tuning.
We prototype our design using an industry-grade data-

plane OS, Demikernel [39], and conduct a preliminary eval-
uation. In the initial stage, we examine and replace “magic
numbers” with tunable knobs across five key components
in Demikernel, evaluating the effort required. We further
demonstrate the potential of ML-driven OS tuning through a
simple case study, observing performance gains that exceed
our initial expectations. These results highlight promising
opportunities and reveal the potential to uncover better per-
formance policies within an ML-native dataplane operating
system.
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Figure 2. Throughput vs. packet out-of-order rate as
a function of the DUP_ACK_THRESHOLD value. A smaller
DUP_ACK_THRESHOLD results in reduced throughput, particu-
larly when the packet out-of-order rate is high.
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Figure 3. Tail latency vs throughput as a function of
DUP_ACK_THRESHOLDwhile simulating 0.1% packet drop rate.
Smaller DUP_ACK_THRESHOLDmakes a significant tail latency
reduction, especially at a lower load.

Network (DPDK)

TCP UDP Else Scheduler Memory Total

# Parms 11 2 6 5 5 29
Table 1. The number of existing parameters in Demikernel.
The search space of OS parameter tuning is large.
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Figure 4. Tail latency depending on the RX_BATCH_SIZE
tuning interval. Slow tuning can damage performance.
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Tuning domain Input ML algorithms ML deployment Timing (scale)
ACC [38] ECN [31] Net. conditions* DDQN [35] Commodity switch Online (𝜇s)

Credence [2] Switch buffers Per-packet states* Random Forest [4] Programmable switch Online (𝜇s)
TCP-RL [25] TCP IW & CC Net. conditions* UCB [11], A3C [23] Host-local Online (s)

Configanator [24] TCP, HTTP Handshake data Bayesian Opt. [33], MAB Host-local Offline (N/A)
Config-Snob [6] Net. protocols Handshake data Bayesian Opt., MAB [37] Host-local Offline (N/A)

Our design Entire dataplane Runtime signals* TBD Host-local Online (𝜇s)
* Runtime-dynamic states

Table 2. A comparison of existing ML-enabled parameter tuning systems.

2 Background and Motivation
With recent technology trends, kernel-bypassed dataplane
OSes are seeing greater adoption in production data cen-
ters, such as Demikernel [39] at Microsoft and Snap [21] at
Google. They have a very simple design goal: achieving high
I/O performance for 𝜇s-scale datacenter applications. How-
ever, bypassing the OS kernel alone is not sufficient to meet
the strict performance requirements of these applications.
Existing dataplane OSes are configured with a large param-
eter space. Finding the right parameter configurations for
optimal application performance is far from a trivial task. To
illustrate this, we take Demikernel [39] as a case study and
present preliminary experimental results below, using the
setup described in §4. While we use Demikernel in our case
study, our design does not depend on it and should generally
apply to other dataplane OSes as well.
Demikernel reduces I/O latency by employing polling-

based dataplaneOS stacks. In each polling round, RX_BATCH_SIZE
determines the maximum number of packets retrieved from
the NIC RX queue into the network stack’s RX buffer. Then,
only the first payload in each flow’s RX buffer is delivered to
the application.With this I/O design, the optimal RX_BATCH_SIZE
depends on runtime conditions. One factor is the number of
parallel flows, which determines how many payloads are de-
livered to the application per polling round. If RX_BATCH_SIZE
is much larger than the flow count, more packets accumu-
late in RX buffers than those delivered to the application,
causing faster saturation under lower load. Conversely, if
RX_BATCH_SIZE is too small, more polling rounds are needed
to retrieve all packets, reducing throughput. To demonstrate
this, we show the peakHTTP server throughput across differ-
ent numbers of parallel flows and RX_BATCH_SIZE values in
Figure 1. The results indicate that no single RX_BATCH_SIZE
performs best for all workloads.We also observed that the op-
timal setting depends on I/O stack design and other runtime
conditions, such as application-level overhead per request.

In the TCP stack, DUP_ACK_THRESHOLD controls the num-
ber of received duplicate acknowledgments (ACKs) before
triggering fast retransmission. The optimal DUP_ACK_THRESHOLD
depends on multiple factors: network condition, flow size,
and the optimization goal (tail latency, throughput, etc.). As

shown in Figure 2, when more packets arrive out-of-order,
a smaller DUP_ACK_THRESHOLD reduces the TCP throughput
due to more unnecessary packet retransmissions. However,
larger DUP_ACK_THRESHOLD can also result in worse perfor-
mance under other workload conditions. Figure 3 shows that,
at a lower traffic rate, larger DUP_ACK_THRESHOLD values lead
to longer tail latency as a result of delayed retransmissions.

Unfortunately, the large parameter space in deployed dat-
aplane OSes makes manual tuning an intractable problem.
Table 1 shows that Demikernel’s I/O stack itself exposes at
least 29 parameters, each with a wide value range. Note that
Demikernel is designed for low latency rather than tuning,
so it potentially has even more parameters relevant to per-
formance optimization. Additionally, dataplane libraries and
drivers (e.g. DPDK [1]) used alongside the OS can introduce
further tunable parameters. Even for a fixed workload, find-
ing the right parameter configuration requires deep expert
knowledge and extensive experimentation. As demonstrated
earlier, the choice of optimal parameters is sensitive to work-
load changes, makingmanual tuning even less feasible. More-
over, parameter tuning should be performed promptly to
adapt to real-time changes effectively. As shown in Figure 4,
the system experiences a noticeable tail latency increase if
the interval of parameter tuning is larger than 500 𝜇s, even in
our simple test case shown in Figure 1. This threshold could
be even more stringent in scenarios where system conditions
are highly fluctuating.

Prior automatic parameter tuning solutions. Data-
plane OSes are not the first class of systems that face this
problem. There has already been extensive prior work that
leverages machine learning to automatically tune system pa-
rameters. However, none of these approaches satisfy our goal
of online tuning for dataplane OSes using microsecond-scale
runtime signals. Table 2 compares prior ML-based parameter
tuning solutions. ACC [38] deploys Double Deep Q-network
(DDQN) [35], a deep reinforcement learning algorithm, on
programmable switches. The algorithm takes switch queue
depth, throughput, and flow information as input to tune
ECN parameters. Credence [2] builds a packet arrival pre-
dictor on switches for efficient buffer sharing. It implements
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Figure 5. System architecture.

a random forest on programmable switches, trained using
packet-level queue length traces. TCP-RL [25] applies re-
inforcement learning to tune TCP initial congestion win-
dow and congestion control algorithm parameters online. It
uses UCB [11] and A3C [23] models, takes web server ob-
served network conditions, and adjusts CC parameters at a
timescale of seconds. Configanator [24] and Config-Snob [6]
use Bayesian optimizations and multi-armed bandit algo-
rithms to tune transport (TCP and QUIC) and application
layer (HTTP) parameters during connection handshake.

3 ML-native Dataplane Operating Systems
The idea of ML-native OSes builds on dataplane OSes de-
signed to efficiently process data-intensive I/O operations
with microsecond-scale latency. Dataplane OSes are respon-
sible for executing performance-critical I/O tasks, including
network processing, CPU scheduling, memory management,
and application multiplexing [10, 21, 26, 27, 39]. These sys-
tems inherit many functionalities from traditional monolithic
kernels and, in doing so, expose a rich set of parameters that
govern system performance. Our system is built on top of
this architecture and incorporates all of these components
into its adaptive tuning framework.
This section presents the design of ML-native dataplane

OSes. We begin by outlining the core principles, then de-
scribe the system architecture, and lastly highlight open
research questions.

3.1 Principles

P1: Supportingmulti-granularity and cross-component
tuning. ML-native OSes should expose a rich set of cross-
component parameters, allowing the system to activate and
tune the most relevant subsets at runtime with appropri-
ate granularity. Mechanisms are required to apply tuning
decisions without compromising system correctness (e.g.,
concurrency and ordering) or disrupting user applications.
P2: Generating meaningful data. ML-native OSes should
allow flexible, built-in observation points throughout the
system to capture high-quality, system-level reasoning data
and the corresponding outcomes. These observation points

enable offline training, online data collection, and continuous
learning. Note that while observation points and tunable
parameters may overlap, they do not represent the exact
same set.
P3: Adapting to dynamic workloads. ML-native OSes
should leverage ML models to detect workload changes,
make tuning decisions, orchestrate relevant tunable parame-
ters, and collect feedback.
P4: Ensuring reliable tuning. ML-native OSes should be
designed to handle inevitable “unseen patterns”, provide fall-
back options, and ensure system liveness and responsiveness
under all conditions.

3.2 Design
Figure 5 illustrates the main system components. Each ap-
plication runs with a dedicated dataplane OS. Across the
essential dataplane components, the OS extensively identi-
fies tunable parameters (in the blue boxes) and observation
points (in the red boxes). Each dataplane OS is linked with a
centralized controller library via shared memory. This con-
troller is implemented as an independent userspace module
that runs in the background, ensuring the control logic op-
erates with only minimal overhead on the dataplane OS.
The system is designed to support a large tuning space

and train a model that learns the relative “importance” of
parameters, enabling selective tuning at runtime. Parameters
can be applied either within a single OS instance or across
multiple OSes on the machine. For example, RX_BATCH_SIZE
or DPDK RX queue size is tuned within an individual OS,
while shared resource scheduling policies (e.g. CPU core
allocation optimized for temporal locality or NUMA-aware
placement) are applied across OSes.
The system also includes a large number of observation

points that collect essential performance metrics capturing
system software dynamics, hardware behaviors, and perfor-
mance outcomes, with causal information (e.g. timestamps)
embedded in the data collection process. For example, each
OS runtime measures queuing and processing delays as well
as workload statistics, while the controller reads relevant
performance counters, such as LLC misses, from hardware
modules (e.g. Intel PMU [7]).

Each dataplane OS continuously writes runtime observa-
tion data into the shared memory region. The controller’s
data processing module busy polls shared memory regions
using a dedicated core, to collect observation data. Then, the
controller spawns ML worker threads using spare cores to
run workload detection and parameter tuning modules. The
tuning decision is written into the shared memory regions
which are polled by the runtime of each dataplane OS to be
applied to corresponding parameters. The data collected dur-
ing the online tuning process is also fed into offline training,
enabling continuous learning and improving model quality
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as the system evolves and supports a broader range of ap-
plications. The approach for 𝜇s-scale, non-interruptive data
exchange between dataplane OSes and the controller library
is inspired by Caladan [10].

3.3 Open Research Questions
We believe the radical design and ML-native OS vision open
up exciting research opportunities.
Q1: Unexplored performance space. No prior work en-
ables the desired level of clarity in performance tuning. In
today’s compute landscape, can ML uncover untapped per-
formance, like research discovering new proteins?
Q2: Granularity of tuning. From a systems perspective,
tuning granularity is critical. Can a model learn that some
parameters need fine-grained tuning in networking but only
coarse-grained adjustments for CPU or memory, or vice
versa? How can we train the model to capture and apply
such patterns?
Q3: The microsecond level. In large-scale datacenters
such as Google andMicrosoft, workloads exhibit fluctuations
and bursts at 𝜇s timescales [15, 21, 40]. Dataplane OSes also
operate at 𝜇s-scale [10, 39]. Making tuning decisions within
such tight latency budgets at runtime remains challenging.
Inspired by guidelines from Google [20], we propose a

hybrid strategy: well-understood and recurring scenarios
are handled via offline-trained lookup tables for zero-cost
inference, while ML is selectively applied to unseen or less
predictable cases for extrapolation. We leverage lightweight
ML models – such as Gradient Boosted Regression Trees
(GBRTs) [29], Random Forests [4], and Deep Q-Networks
(DQNs) [14] – which have demonstrated 𝜇s-scale inference
when given compact, well-refined features [2, 20, 38]. This
strategy maintains adaptability while respecting strict com-
putational budgets, enabling responsive decisions at the dat-
aplane.
Q4: Unified observing protocol. Finally, as ML-native dat-
aplane OSes, we aim to develop a unified observing protocol
that different system types – including database systems,
microkernels, and microVMs [3, 18] – can adopt. This would
allow the tuning interface to be shared across systems, en-
abling them to benefit from each other and accelerate the
ML-native OS era.

4 Preliminary Evaluation
We implement a prototype of our design by extending Demik-
ernel [39]. Our testbed consists of two hosts, each equipped
with dual Intel Xeon Gold 6326 CPUs, 256GB RAM and a
Mellanox ConnectX-5 100 GbE NIC, running Ubuntu 20.04.
One host runs an HTTP server with the dataplane OS, while
the other generates HTTP GET requests using Caladan open-
loop TCP load generator [10], with packet arrival times fol-
lowing a Poisson distribution to emulate Google’s datacenter
workload [22].
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Figure 6. By tuning RX_BATCH_SIZE based on runtime OS
signals, the system can maintain low tail latency even under
dynamic workload conditions.

As a proof of concept, our prototype implements a simple
decision tree trained using historical experimental data (simi-
lar to that in Figure 1), including the number of parallel flows,
RX_BATCH_SIZE, and the measured total throughput. The
dataplane OS feeds the runtime signal of flow statistics into
the decision tree, and dynamically tunes the RX_BATCH_SIZE
based on the model output.
To evaluate our prototype, we generate 0.6 million re-

quests per second from the client, while gradually increasing
the number of parallel flows. Figure 6 presents the 99th-
percentile latency alongside the average RX_BATCH_SIZE,
computed over each 1ms timewindow.Without RX_BATCH_SIZE
tuning, the OS uses a static RX_BATCH_SIZE of 4. This set-
ting performs well under moderate load (e.g., fewer than
40 flows), but with more than 60 flows, the small batch size
becomes a bottleneck, causing queuing delays to exceed
milliseconds. In contrast, our system dynamically selects
RX_BATCH_SIZE based on runtime signals, enabling the dat-
aplane OS to adapt to changing workloads and maintain
tail latency around 100 𝜇s which is comparable to the ideal
performance under a constant load.

5 Conclusion
We present the vision and design of ML-native dataplane
operating systems, built around four key principles: support-
ing multi-granularity and cross-component tuning, gener-
ating high-quality and meaningful runtime data, adapting
efficiently to dynamic workloads, and ensuring reliable, con-
sistent tuning decisions. Our initial prototype illustrates the
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benefits of transforming traditionally hard-coded “magic
numbers” into tunable parameters, enabling the system to
self-optimize under varying conditions. Beyond these early
results, we aim to broaden the scope of tunable dimensions,
strengthen the feedback loops between components, and ex-
plore more advanced machine learning models to answer the
research questions that guide this work. Ultimately, our goal
is to establish dataplane operating systems as intelligent,
self-adaptive platforms capable of sustained performance
improvement in complex, evolving environments.
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