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Abstract
Application programmers increasingly prefer distributed stor-
age systems with strong consistency and distributed transac-
tions (e.g., Google’s Spanner) for their strong guarantees and
ease of use. Unfortunately, existing transactional storage sys-
tems are expensive to use – in part because they require costly
replication protocols, like Paxos, for fault tolerance. In this
paper, we present a new approach that makes transactional
storage systems more affordable: we eliminate consistency
from the replication protocol while still providing distributed
transactions with strong consistency to applications.

We present TAPIR – the Transactional Application Proto-
col for Inconsistent Replication – the first transaction protocol
to use a novel replication protocol, called inconsistent repli-
cation, that provides fault tolerance without consistency. By
enforcing strong consistency only in the transaction protocol,
TAPIR can commit transactions in a single round-trip and or-
der distributed transactions without centralized coordination.
We demonstrate the use of TAPIR in a transactional key-value
store, TAPIR-KV. Compared to conventional systems, TAPIR-
KV provides better latency and throughput.

1. Introduction
Distributed storage systems provide fault tolerance and avail-
ability for large-scale web applications. Increasingly, appli-
cation programmers prefer systems that support distributed
transactions with strong consistency to help them manage
application complexity and concurrency in a distributed en-
vironment. Several recent systems [4, 11, 17, 22] reflect this
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trend, notably Google’s Spanner system [13], which guaran-
tees linearizable transaction ordering.1

For application programmers, distributed transactional
storage with strong consistency comes at a price. These sys-
tems commonly use replication for fault-tolerance, and repli-
cation protocols with strong consistency, like Paxos, impose
a high performance cost, while more efficient, weak consis-
tency protocols fail to provide strong system guarantees.

Significant prior work has addressed improving the perfor-
mance of transactional storage systems – including systems
that optimize for read-only transactions [4, 13], more restric-
tive transaction models [2, 14, 22], or weaker consistency
guarantees [3, 33, 42]. However, none of these systems have
addressed both latency and throughput for general-purpose,
replicated, read-write transactions with strong consistency.

In this paper, we use a new approach to reduce the cost
of replicated, read-write transactions and make transactional
storage more affordable for programmers. Our key insight
is that existing transactional storage systems waste work
and performance by incorporating a distributed transaction
protocol and a replication protocol that both enforce strong
consistency. Instead, we show that it is possible to provide
distributed transactions with better performance and the same
transaction and consistency model using replication with no
consistency.

To demonstrate our approach, we designed TAPIR – the
Transactional Application Protocol for Inconsistent Replica-
tion. TAPIR uses a new replication technique, called incon-
sistent replication (IR), that provides fault tolerance without
consistency. Rather than an ordered operation log, IR presents
an unordered operation set to applications. Successful opera-
tions execute at a majority of the replicas and survive failures,
but replicas can execute them in any order. Thus, IR needs no
cross-replica coordination or designated leader for operation
processing. However, unlike eventual consistency, IR allows
applications to enforce higher-level invariants when needed.

Thus, despite IR’s weak consistency guarantees, TAPIR
provides linearizable read-write transactions and supports
globally-consistent reads across the database at a timestamp –

1 Spanner’s linearizable transaction ordering is also referred to as strict
serializable isolation or external consistency.
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Figure 1: A common architecture for distributed transactional
storage systems today. The distributed transaction protocol consists
of an atomic commitment protocol, commonly Two-Phase Commit
(2PC), and a concurrency control (CC) mechanism. This runs atop a
replication (R) protocol, like Paxos.

the same guarantees as Spanner. TAPIR efficiently leverages
IR to distribute read-write transactions in a single round-trip
and order transactions globally across partitions and replicas
with no centralized coordination.

We implemented TAPIR in a new distributed transactional
key-value store called TAPIR-KV, which supports linearizable
transactions over a partitioned set of keys. Our experiments
found that TAPIR-KV had: (1) 50% lower commit latency
and (2) more than 3× better throughput compared to sys-
tems using conventional transaction protocols, including an
implementation of Spanner’s transaction protocol, and (3)
comparable performance to MongoDB [35] and Redis [39],
widely-used eventual consistency systems.

This paper makes the following contributions to the design
of distributed, replicated transaction systems:

• We define inconsistent replication, a new replication tech-
nique that provides fault tolerance without consistency.

• We design TAPIR, a new distributed transaction protocol
that provides strict serializable transactions using incon-
sistent replication for fault tolerance.

• We build and evaluate TAPIR-KV, a key-value store that
combines inconsistent replication and TAPIR to achieve
high-performance transactional storage.

2. Over-Coordination in Transaction Systems
Replication protocols have become an important compo-
nent in distributed storage systems. Modern storage sys-
tems commonly partition data into shards for scalability and
then replicate each shard for fault-tolerance and availabil-
ity [4, 9, 13, 34]. To support transactions with strong con-
sistency, they must implement both a distributed transaction
protocol – to ensure atomicity and consistency for transac-
tions across shards – and a replication protocol – to ensure
transactions are not lost (provided that no more than half of
the replicas in each shard fail at once). As shown in Figure 1,
these systems typically place the transaction protocol, which
combines an atomic commitment protocol and a concurrency
control mechanism, on top of the replication protocol (al-
though alternative architectures have also occasionally been
proposed [34]).

Distributed transaction protocols assume the availability
of an ordered, fault-tolerant log. This ordered log abstraction
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Figure 2: Example read-write transaction using two-phase commit,
viewstamped replication and strict two-phase locking. Availability
zones represent either a cluster, datacenter or geographic region.
Each shard holds a partition of the data stored in the system and
has replicas in each zone for fault tolerance. The red, dashed lines
represent redundant coordination in the replication layer.

is easily and efficiently implemented with a spinning disk but
becomes more complicated and expensive with replication.
To enforce the serial ordering of log operations, transactional
storage systems must integrate a costly replication proto-
col with strong consistency (e.g., Paxos [27], Viewstamped
Replication [37] or virtual synchrony [7]) rather than a more
efficient, weak consistency protocol [24, 40].

The traditional log abstraction imposes a serious perfor-
mance penalty on replicated transactional storage systems,
because it enforces strict serial ordering using expensive dis-
tributed coordination in two places: the replication protocol
enforces a serial ordering of operations across replicas in each
shard, while the distributed transaction protocol enforces a
serial ordering of transactions across shards. This redundancy
impairs latency and throughput for systems that integrate both
protocols. The replication protocol must coordinate across
replicas on every operation to enforce strong consistency; as a
result, it takes at least two round-trips to order any read-write
transaction. Further, to efficiently order operations, these pro-
tocols typically rely on a replica leader, which can introduce
a throughput bottleneck to the system.

As an example, Figure 2 shows the redundant coordination
required for a single read-write transaction in a system like
Spanner. Within the transaction, Read operations go to the
shard leaders (which may be in other datacenters), because
the operations must be ordered across replicas, even though
they are not replicated. To Prepare a transaction for commit,
the transaction protocol must coordinate transaction ordering
across shards, and then the replication protocol coordinates



the Prepare operation ordering across replicas. As a result, it
takes at least two round-trips to commit the transaction.

In the TAPIR and IR design, we eliminate the redundancy
of strict serial ordering over the two layers and its associated
performance costs. IR is the first replication protocol to
provide pure fault tolerance without consistency. Instead
of an ordered operation log, IR presents the abstraction of
an unordered operation set. Existing transaction protocols
cannot efficiently use IR, so TAPIR is the first transaction
protocol designed to provide linearizable transactions on IR.

3. Inconsistent Replication
Inconsistent replication (IR) is an efficient replication proto-
col designed to be used with a higher-level protocol, like a
distributed transaction protocol. IR provides fault-tolerance
without enforcing any consistency guarantees of its own. In-
stead, it allows the higher-level protocol, which we refer to
as the application protocol, to decide the outcome of con-
flicting operations and recover those decisions through IR’s
fault-tolerant, unordered operation set.

3.1 IR Overview
Application protocols invoke operations through IR in one of
two modes:

• inconsistent – operations can execute in any order. Suc-
cessful operations persist across failures.

• consensus – operations execute in any order, but return a
single consensus result. Successful operations and their
consensus results persist across failures.

inconsistent operations are similar to operations in weak con-
sistency replication protocols: they can execute in different or-
ders at each replica, and the application protocol must resolve
conflicts afterwards. In contrast, consensus operations allow
the application protocol to decide the outcome of conflicts
(by executing a decide function specified by the application
protocol) and recover that decision afterwards by ensuring
that the chosen result persists across failures as the consensus
result. In this way, consensus operations can serve as the basic
building block for the higher-level guarantees of application
protocols. For example, a distributed transaction protocol can
decide which of two conflicting transactions will commit, and
IR will ensure that decision persists across failures.

3.1.1 IR Application Protocol Interface
Figure 3 summarizes the IR interfaces at clients and replicas.
Application protocols invoke operations through a client-side
IR library using InvokeInconsistent and InvokeConsensus,
and then IR runs operations using the ExecInconsistent and
ExecConsensus upcalls at the replicas.

If replicas return conflicting/non-matching results for a
consensus operation, IR allows the application protocol to de-
cide the operation’s outcome by invoking the decide function
– passed in by the application protocol to InvokeConsensus –
in the client-side library. The decide function takes the list of

Client Interface
InvokeInconsistent(op)
InvokeConsensus(op, decide(results))→ result
Replica Upcalls
ExecInconsistent(op) ExecConsensus(op)→ result
Sync(R) Merge(d,u)→ record

Client State
• client id - unique identifier for the client
• operation counter - # of sent operations

Replica State
• state - current replica state; either NORMAL or VIEW-CHANGING
• record - unordered set of operations and consensus results

Figure 3: Summary of IR interfaces and client/replica state.
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Figure 4: IR Call Flow.

returned results (the candidate results) and returns a single re-
sult, which IR ensures will persist as the consensus result. The
application protocol can later recover the consensus result to
find out its decision to conflicting operations.

Some replicas may miss operations or need to reconcile
their state if the consensus result chosen by the application
protocol does not match their result. To ensure that IR replicas
eventually converge, they periodically synchronize. Similar
to eventual consistency, IR relies on the application protocol
to reconcile inconsistent replicas. On synchronization, a
single IR node first upcalls into the application protocol with
Merge, which takes records from inconsistent replicas and
merges them into a master record of successful operations
and consensus results. Then, IR upcalls into the application
protocol with Sync at each replica. Sync takes the master
record and reconciles application protocol state to make the
replica consistent with the chosen consensus results.

3.1.2 IR Guarantees
We define a successful operation to be one that returns to
the application protocol. The operation set of any IR group
includes all successful operations. We define an operation X
as being visible to an operation Y if one of the replicas exe-
cuting Y has previously executed X . IR ensures the following
properties for the operation set:



P1. [Fault tolerance] At any time, every operation in the
operation set is in the record of at least one replica in any
quorum of f +1 non-failed replicas.

P2. [Visibility] For any two operations in the operation set,
at least one is visible to the other.

P3. [Consensus results] At any time, the result returned by
a successful consensus operation is in the record of at
least one replica in any quorum. The only exception is
if the consensus result has been explicitly modified by
the application protocol through Merge, after which the
outcome of Merge will be recorded instead.

IR ensures guarantees are met for up to f simultaneous fail-
ures out of 2 f +1 replicas2 and any number of client failures.
Replicas must fail by crashing, without Byzantine behavior.
We assume an asynchronous network where messages can be
lost or delivered out of order. IR does not require synchronous
disk writes, ensuring guarantees are maintained even if clients
or replicas lose state on failure. IR makes progress (operations
will eventually become successful) provided that messages
that are repeatedly resent are eventually delivered before the
recipients time out.

3.1.3 Application Protocol Example: Fault-Tolerant
Lock Server

As an example, we show how to build a simple lock server
using IR. The lock server’s guarantee is mutual exclusion:
a lock cannot be held by two clients at once. We replicate
Lock as a consensus operation and Unlock as an inconsistent

operation. A client application acquires the lock only if Lock
successfully returns OK as a consensus result.

Since operations can run in any order at the replicas, clients
use unique ids (e.g., a tuple of client id and a sequence num-
ber) to identify corresponding Lock and Unlock operations
and only call Unlock if Lock first succeeds. Replicas will
therefore be able to later match up Lock and Unlock opera-
tions, regardless of order, and determine the lock’s status.

Note that inconsistent operations are not commutative
because they can have side-effects that affect the outcome
of consensus operations. If an Unlock and Lock execute in
different orders at different replicas, some replicas might
have the lock free, while others might not. If replicas return
different results to Lock, IR invokes the lock server’s decide
function, which returns OK if f +1 replicas returned OK and
NO otherwise. IR only invokes Merge and Sync on recovery,
so we defer their discussion until Section 3.2.2.

IR’s guarantees ensure correctness for our lock server.
P1 ensures that held locks are persistent: a Lock operation
persists at one or more replicas in any quorum. P2 ensures
mutual exclusion: for any two conflicting Lock operations,
one is visible to the other in any quorum; therefore, IR
will never receive f +1 matching OK results, precluding the
decide function from returning OK. P3 ensures that once the

2 Using more than 2 f + 1 replicas for f failures is possible but illogical
because it requires a larger quorum size with no additional benefit.

client application receives OK from a Lock, the result will not
change. The lock server’s Merge function will not change it,
as we will show later, and IR ensures that the OK will persist
in the record of at least one replica out of any quorum.

3.2 IR Protocol
Figure 3 shows the IR state at the clients and replicas. Each
IR client keeps an operation counter, which, combined with
the client id, uniquely identifies operations. Each replica
keeps an unordered record of executed operations and results
for consensus operations. Replicas add inconsistent opera-
tions to their record as TENTATIVE and then mark them as
FINALIZED once they execute. consensus operations are first
marked TENTATIVE with the result of locally executing the
operation, then FINALIZED once the record has the consensus
result.

IR uses four sub-protocols – operation processing, replica
recovery/synchronization, client recovery, and group member-
ship change. Due to space constraints, we describe only the
first two here; the third is described in [46] and the the last is
identical to that of Viewstamped Replication [32].

3.2.1 Operation Processing
We begin by describing IR’s normal-case inconsistent opera-
tion processing protocol without failures:
1. The client sends 〈PROPOSE, id, op〉 to all replicas, where

id is the operation id and op is the operation.
2. Each replica writes id and op to its record as TENTATIVE,

then responds to the client with 〈REPLY, id〉.
3. Once the client receives f + 1 responses from replicas

(retrying if necessary), it returns to the application protocol
and asynchronously sends 〈FINALIZE, id〉 to all replicas.
(FINALIZE can also be piggy-backed on the client’s next
message.)

4. On FINALIZE, replicas upcall into the application protocol
with ExecInconsistent(op) and mark op as FINALIZED.

Due to the lack of consistency, IR can successfully complete
an inconsistent operation with a single round-trip to f + 1
replicas and no coordination across replicas.

Next, we describe the normal-case consensus operation
processing protocol, which has both a fast path and a slow
path. IR uses the fast path when it can achieve a fast quorum
of d 3

2 f e+ 1 replicas that return matching results to the
operation. Similar to Fast Paxos and Speculative Paxos [38],
IR requires a fast quorum to ensure that a majority of the
replicas in any quorum agrees to the consensus result. This
quorum size is necessary to execute operations in a single
round trip when using a replica group of size 2 f + 1 [29];
an alternative would be to use quorums of size 2 f + 1 in a
system with 3 f +1 replicas.

When IR cannot achieve a fast quorum, either because
replicas did not return enough matching results (e.g., if there
are conflicting concurrent operations) or because not enough
replicas responded (e.g., if more than f

2 are down), then it
must take the slow path. We describe both below:



1. The client sends 〈PROPOSE, id, op〉 to all replicas.
2. Each replica calls into the application protocol with

ExecConsensus(op) and writes id, op, and result to its
record as TENTATIVE. The replica responds to the client
with 〈REPLY, id, result〉.

3. If the client receives at least d 3
2 f e+ 1 matching results

(within a timeout), then it takes the fast path: the client re-
turns result to the application protocol and asynchronously
sends 〈FINALIZE, id, result〉 to all replicas.

4. Otherwise, the client takes the slow path: once it re-
ceives f +1 responses (retrying if necessary), then it sends
〈FINALIZE, id, result〉 to all replicas, where result is ob-
tained from executing the decide function.

5. On receiving FINALIZE, each replica marks the operation
as FINALIZED, updating its record if the received result is
different, and sends 〈CONFIRM, id〉 to the client.

6. On the slow path, the client returns result to the application
protocol once it has received f +1 CONFIRM responses.

The fast path for consensus operations takes a single round
trip to d 3

2 f e+ 1 replicas, while the slow path requires two
round-trips to at least f + 1 replicas. Note that IR replicas
can execute operations in different orders and still return
matching responses, so IR can use the fast path without a
strict serial ordering of operations across replicas. IR can also
run the fast path and slow path in parallel as an optimization.

3.2.2 Replica Recovery and Synchronization
IR uses a single protocol for recovering failed replicas and
running periodic synchronizations. On recovery, we must
ensure that the failed replica applies all operations it may
have lost or missed in the operation set, so we use the same
protocol to periodically bring all replicas up-to-date.

To handle recovery and synchronization, we introduce
view changes into the IR protocol, similar to Viewstamped
Replication (VR) [37]. These maintain IR’s correctness
guarantees across failures. Each IR view change is run by a
leader; leaders coordinate only view changes, not operation
processing. During a view change, the leader has just one
task: to make at least f +1 replicas up-to-date (i.e., they have
applied all operations in the operation set) and consistent
with each other (i.e., they have applied the same consensus
results). IR view changes require a leader because polling
inconsistent replicas can lead to conflicting sets of operations
and consensus results. Thus, the leader must decide on a
master record that replicas can then use to synchronize with
each other.

To support view changes, each IR replica maintains a
current view, which consists of the identity of the leader, a list
of the replicas in the group, and a (monotonically increasing)
view number uniquely identifying the view. Each IR replica
can be in one of the three states: NORMAL, VIEW-CHANGING
or RECOVERING. Replicas process operations only in the
NORMAL state. We make four additions to IR’s operation
processing protocol:

1. IR replicas send their current view number in every re-
sponse to clients. For an operation to be considered suc-
cessful, the IR client must receive responses with matching
view numbers. For consensus operations, the view num-
bers in REPLY and CONFIRM must match as well. If a
client receives responses with different view numbers, it
notifies the replicas in the older view.

2. On receiving a message with a view number that is
higher than its current view, a replica moves to the VIEW-
CHANGING state and requests the master record from any
replica in the higher view. It replaces its own record with
the master record and upcalls into the application protocol
with Sync before returning to NORMAL state.

3. On PROPOSE, each replica first checks whether the opera-
tion was already FINALIZED by a view change. If so, the
replica responds with 〈REPLY, id, FINALIZED, v, [result]〉,
where v is the replica’s current view number and result is
the consensus result for consensus operations.

4. If the client receives REPLY with a FINALIZED status
for consensus operations, it sends 〈FINALIZE, id, result〉
with the received result and waits until it receives f + 1
CONFIRM responses in the same view before returning
result to the application protocol.

We sketch the view change protocol here; the full descrip-
tion is available in our TR [46]. The protocol is identical to
VR, except that the leader must merge records from the latest
view, rather than simply taking the longest log from the latest
view, to preserve all the guarantees stated in 3.1.2. During
synchronization, IR finalizes all TENTATIVE operations, re-
lying on the application protocol to decide any consensus
results.

Once the leader has received f +1 records, it merges the
records from replicas in the latest view into a master record, R,
using IR-MERGE-RECORDS(records) (see Figure 5), where
records is the set of received records from replicas in the high-
est view. IR-MERGE-RECORDS starts by adding all inconsis-
tent operations and consensus operations marked FINALIZED
to R and calling Sync into the application protocol. These op-
erations must persist in the next view, so we first apply them to
the leader, ensuring that they are visible to any operations for
which the leader will decide consensus results next in Merge.
As an example, Sync for the lock server matches up all cor-
responding Lock and Unlock by id; if there are unmatched
Locks, it sets locked = TRUE; otherwise, locked = FALSE.

IR asks the application protocol to decide the consensus
result for the remaining TENTATIVE consensus operations,
which either: (1) have a matching result, which we define as
the majority result, in at least d f

2 e+1 records or (2) do not.
IR places these operations in d and u, respectively, and calls
Merge(d,u) into the application protocol, which must return
a consensus result for every operation in d and u.

IR must rely on the application protocol to decide consen-
sus results for several reasons. For operations in d, IR cannot
tell whether the operation succeeded with the majority result



IR-MERGE-RECORDS(records)

1 R,d,u = /0
2 for ∀op ∈ records
3 if op. type = = inconsistent
4 R = R∪op
5 elseif op. type = = consensus and op. status = = FINALIZED
6 R = R∪op
7 elseif op. type = = consensus and op. status = = TENTATIVE

8 if op. result in more than f
2 +1 records

9 d = d∪op
10 else
11 u = u∪op
12 Sync(R)
13 return R∪Merge(d,u)

Figure 5: Merge function for the master record. We merge all records
from replicas in the latest view, which is always a strict super set of
the records from replicas in lower views.

on the fast path, or whether it took the slow path and the appli-
cation protocol decide’d a different result that was later lost.
In some cases, it is not safe for IR to keep the majority result
because it would violate application protocol invariants. For
example, in the lock server, OK could be the majority result if
only d f

2 e+1 replicas replied OK, but the other replicas might
have accepted a conflicting lock request. However, it is also
possible that the other replicas did respond OK, in which case
OK would have been a successful response on the fast-path.

The need to resolve this ambiguity is the reason for the
caveat in IR’s consensus property (P3) that consensus results
can be changed in Merge. Fortunately, the application protocol
can ensure that successful consensus results do not change
in Merge, simply by maintaining the majority results in d on
Merge unless they violate invariants. The merge function for
the lock server, therefore, does not change a majority response
of OK, unless another client holds the lock. In that case, the
operation in d could not have returned a successful consensus
result to the client (either through the fast or the slow path),
so it is safe to change its result.

For operations in u, IR needs to invoke decide but cannot
without at least f + 1 results, so uses Merge instead. The
application protocol can decide consensus results in Merge

without f +1 replica results and still preserve IR’s visibility
property because IR has already applied all of the operations
in R and d, which are the only operations definitely in the
operation set, at this point.

The leader adds all operations returned from Merge and
their consensus results to R, then sends R to the other replicas,
which call Sync(R) into the application protocol and replace
their own records with R. The view change is complete
after at least f + 1 replicas have exchanged and merged
records and SYNC’d with the master record. A replica can
only process requests in the new view (in the NORMAL state)
after it completes the view change protocol. At this point, any
recovering replicas can also be considered recovered. If the
leader of the view change does not finish the view change by
some timeout, the group will elect a new leader to complete

the protocol by starting a new view change with a larger view
number.

3.3 Correctness
We give a brief sketch of correctness for IR, showing why it
satisfies the three properties above. For a more complete proof
and a TLA+ specification [26], see our technical report [46].

We first show that all three properties hold in the absence
of failures and synchronization. Define the set of persistent
operations to be those operations in the record of at least one
replica in any quorum of f +1 non-failed replicas. P1 states
that every operation that succeeded is persistent; this is true
by quorum intersection because an operation only succeeds
once responses are received from f +1 of 2 f +1 replicas.

For P2, consider any two successful consensus operations
X and Y . Each received candidate results from a quorum
of f + 1 replicas that executed the request. By quorum
intersection, there must be one replica that executed both
X and Y ; assume without loss of generality that it executed X
first. Then its candidate result for Y reflects the effects of X ,
and X is visible to Y .

Finally, for P3, a successful consensus operation result was
obtained either on the fast path, in which case a fast quorum
of replicas has the same result marked as TENTATIVE in their
records, or on the slow path, where f +1 replicas have the
result marked as FINALIZED in their record. In both cases, at
least one replica in every quorum will have that result.

Since replicas can lose records on failures and must per-
form periodic synchronizations, we must also prove that the
synchronization/recovery protocol maintains these properties.
On synchronization or recovery, the protocol ensures that all
persistent operations from the previous view are persistent in
the new view. The leader of the new view merges the record
of replicas in the highest view from f + 1 responses. Any
persistent operation appears in one of these records, and the
merge procedure ensures it is retained in the master record. It
is sufficient to only merge records from replicas in the highest
because, similar to VR, IR’s view change protocol ensures
that no replicas that participated in the view change will move
to a lower view, thus no operations will become persistent in
lower views.

The view change completes by synchronizing at least f +1
replicas with the master record, ensuring P1 continues to
hold. This also maintains property P3: a consensus operation
that took the slow path will appear as FINALIZED in at least
one record, and one that took the fast path will appear as
TENTATIVE in at least d f

2 e+1 records. IR’s merge procedure
ensures that the results of these operations are maintained,
unless the application protocol chooses to change them in
its Merge function. Once the operation is FINALIZED at f +1
replicas (by a successful view-change or by a client), the pro-
tocol ensures that the consensus result won’t be changed and
will persist: the operation will always appear as FINALIZED
when constructing any subsequent master records and thus



the merging procedure will always Sync it. Finally, P2 is
maintained during the view change because the leader first
calls Sync with all previously successful operations before
calling Merge, thus the previously successful operations will
be visible to any operations that the leader finalizes during the
view change. The view change then ensures that any finalized
operation will continue to be finalized in the record of at least
f +1 replicas, and thus be visible to subsequent successful
operations.

4. Building Atop IR
IR obtains performance benefits because it offers weak con-
sistency guarantees and relies on application protocols to
resolve inconsistencies, similar to eventual consistency proto-
cols such as Dynamo [15] and Bayou [43]. However, unlike
eventual consistency systems, which expect applications to
resolve conflicts after they happen, IR allows application pro-
tocols to prevent conflicts before they happen. Using consen-

sus operations, application protocols can enforce higher-level
guarantees (e.g., TAPIR’s linearizable transaction ordering)
across replicas despite IR’s weak consistency.

However, building strong guarantees on IR requires care-
ful application protocol design. IR cannot support certain
application protocol invariants. Moreover, if misapplied, IR
can even provide applications with worse performance than a
strongly consistent replication protocol. In this section, we
discuss the properties that application protocols need to have
to correctly and efficiently enforce higher-level guarantees
with IR and TAPIR’s techniques for efficiently providing
linearizable transactions.

4.1 IR Application Protocol Requirement: Invariant
checks must be performed pairwise.

Application protocols can enforce certain types of invariants
with IR, but not others. IR guarantees that in any pair of con-
sensus operations, at least one will be visible to the other
(P2). Thus, IR readily supports invariants that can be safely
checked by examining pairs of operations for conflicts. For
example, our lock server example can enforce mutual exclu-
sion. However, application protocols cannot check invariants
that require the entire history, because each IR replica may
have an incomplete history of operations. For example, track-
ing bank account balances and allowing withdrawals only
if the balance remains positive is problematic because the
invariant check must consider the entire history of deposits
and withdrawals.

Despite this seemingly restrictive limitation, application
protocols can still use IR to enforce useful invariants, includ-
ing lock-based concurrency control, like Strict Two-Phase
Locking (S2PL). As a result, distributed transaction protocols
like Spanner [13] or Replicated Commit [34] would work
with IR. IR can also support optimistic concurrency control
(OCC) [23] because OCC checks are pairwise as well: each
committing transaction is checked against every previously

committed transaction, so consensus operations suffice to en-
sure that at least one replica sees any conflicting transaction
and aborts the transaction being checked.

4.2 IR Application Protocol Requirement: Application
protocols must be able to change consensus operation
results.

Inconsistent replicas could execute consensus operations with
one result and later find the group agreed to a different
consensus result. For example, if the group in our lock server
agrees to reject a Lock operation that one replica accepted,
the replica must later free the lock, and vice versa. As noted
above, the group as a whole continues to enforce mutual
exclusion, so these temporary inconsistencies are tolerable
and are always resolved by the end of synchronization.

In TAPIR, we take the same approach with distributed
transaction protocols. 2PC-based protocols are always pre-
pared to abort transactions, so they can easily accommodate
a Prepare result changing from PREPARE-OK to ABORT. If
ABORT changes to PREPARE-OK, it might temporarily cause a
conflict at the replica, which can be correctly resolved because
the group as a whole could not have agreed to PREPARE-OK
for two conflicting transactions.

Changing Prepare results does sometimes cause unneces-
sary aborts. To reduce these, TAPIR introduces two Prepare

results in addition to PREPARE-OK and ABORT: ABSTAIN
and RETRY. ABSTAIN helps TAPIR distinguish between con-
flicts with committed transactions, which will not abort, and
conflicts with prepared transactions, which may later abort.
Replicas return RETRY if the transaction has a chance of
committing later. The client can retry the Prepare without
re-executing the transaction.

4.3 IR Performance Principle: Application protocols
should not expect operations to execute in the same
order.

To efficiently achieve agreement on consensus results, appli-
cation protocols should not rely on operation ordering for
application ordering. For example, many transaction proto-
cols [4, 19, 22] use Paxos operation ordering to determine
transaction ordering. They would perform worse with IR
because replicas are unlikely to agree on which transaction
should be next in the transaction ordering.

In TAPIR, we use optimistic timestamp ordering to ensure
that replicas agree on a single transaction ordering despite
executing operations in different orders. Like Spanner [13],
every committed transaction has a timestamp, and committed
transaction timestamps reflect a linearizable ordering. How-
ever, TAPIR clients, not servers, propose a timestamp for
their transaction; thus, if TAPIR replicas agree to commit
a transaction, they have all agreed to the same transaction
ordering.

TAPIR replicas use these timestamps to order their trans-
action logs and multi-versioned stores. Therefore, replicas
can execute Commit in different orders but still converge to



the same application state. TAPIR leverages loosely synchro-
nized clocks at the clients for picking transaction timestamps,
which improves performance but is not necessary for correct-
ness.

4.4 IR Performance Principle: Application protocols
should use cheaper inconsistent operations whenever
possible rather than consensus operations.

By concentrating invariant checks in a few operations, applica-
tion protocols can reduce consensus operations and improve
their performance. For example, in a transaction protocol,
any operation that decides transaction ordering must be a
consensus operation to ensure that replicas agree to the same
transaction ordering. For locking-based transaction protocols,
this is any operation that acquires a lock. Thus, every Read

and Write must be replicated as a consensus operation.
TAPIR improves on this by using optimistic transaction

ordering and OCC, which reduces consensus operations by
concentrating all ordering decisions into a single set of vali-
dation checks at the proposed transaction timestamp. These
checks execute in Prepare, which is TAPIR’s only consen-

sus operation. Commit and Abort are inconsistent operations,
while Read and Write are not replicated.

5. TAPIR
This section details TAPIR – the Transactional Application
Protocol for Inconsistent Replication. As noted, TAPIR is
designed to efficiently leverage IR’s weak guarantees to
provide high-performance linearizable transactions. Using
IR, TAPIR can order a transaction in a single round-trip to
all replicas in all participant shards without any centralized
coordination.

TAPIR is designed to be layered atop IR in a replicated,
transactional storage system. Together, TAPIR and IR elim-
inate the redundancy in the replicated transactional system,
as shown in Figure 2. As a comparison, Figure 6 shows the
coordination required for the same read-write transaction in
TAPIR with the following benefits: (1) TAPIR does not have
any leaders or centralized coordination, (2) TAPIR Reads al-
ways go to the closest replica, and (3) TAPIR Commit takes a
single round-trip to the participants in the common case.

5.1 Overview
TAPIR is designed to provide distributed transactions for
a scalable storage architecture. This architecture partitions
data into shards and replicates each shard across a set of
storage servers for availability and fault tolerance. Clients
are front-end application servers, located in the same or
another datacenter as the storage servers, not end-hosts or
user machines. They have access to a directory of storage
servers using a service like Chubby [8] or ZooKeeper [20] and
directly map data to servers using a technique like consistent
hashing [21].

TAPIR provides a general storage and transaction interface
for applications via a client-side library. Note that TAPIR is
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Figure 6: Example read-write transaction in TAPIR. TAPIR executes
the same transaction pictured in Figure 2 with less redundant
coordination. Reads go to the closest replica and Prepare takes a
single round-trip to all replicas in all shards.

the application protocol for IR; applications using TAPIR do
not interact with IR directly.

A TAPIR application Begins a transaction, then executes
Reads and Writes during the transaction’s execution period.
During this period, the application can Abort the transaction.
Once it finishes execution, the application Commits the trans-
action. Once the application calls Commit, it can no longer
abort the transaction. The 2PC protocol will run to comple-
tion, committing or aborting the transaction based entirely
on the decision of the participants. As a result, TAPIR’s 2PC
coordinators cannot make commit or abort decisions and do
not have to be fault-tolerant. This property allows TAPIR to
use clients as 2PC coordinators, as in MDCC [22], to reduce
the number of round-trips to storage servers.

TAPIR provides the traditional ACID guarantees with the
strictest level of isolation: strict serializability (or linearizabil-
ity) of committed transactions.

5.2 Protocol
TAPIR provides transaction guarantees using a transaction
processing protocol, IR functions, and a coordinator recovery
protocol.

Figure 7 shows TAPIR’s interfaces and state at clients and
replicas. Replicas keep committed and aborted transactions
in a transaction log in timestamp order; they also maintain a
multi-versioned data store, where each version of an object is
identified by the timestamp of the transaction that wrote the
version. TAPIR replicas serve reads from the versioned data
store and maintain the transaction log for synchronization and
checkpointing. Like other 2PC-based protocols, each TAPIR



Client Interface
Begin() Read(key)→object Abort()
Commit()→TRUE/FALSE Write(key,object)

Client State
• client id - unique client identifier
• transaction - ongoing transaction id, read set, write set

Replica Interface
Read(key)→object,version Commit(txn,timestamp)

Abort(txn,timestamp)
Prepare(txn,timestamp)→PREPARE-OK/ABSTAIN/ABORT/(RETRY, t)

Replica State
• prepared list - list of transactions replica is prepared to commit
• transaction log - log of committed and aborted transactions
• store - versioned data store

Figure 7: Summary of TAPIR interfaces and client and replica state.

replica also maintains a prepared list of transactions that it
has agreed to commit.

Each TAPIR client supports one ongoing transaction at a
time. In addition to its client id, the client stores the state for
the ongoing transaction, including the transaction id and read
and write sets. The transaction id must be unique, so the client
uses a tuple of its client id and transaction counter, similar
to IR. TAPIR does not require synchronous disk writes at the
client or the replicas, as clients do not have to be fault-tolerant
and replicas use IR.

5.2.1 Transaction Processing
We begin with TAPIR’s protocol for executing transactions.
1. For Write(key, object), the client buffers key and object in

the write set until commit and returns immediately.
2. For Read(key), if key is in the transaction’s write set, the

client returns object from the write set. If the transaction
has already read key, it returns a cached copy. Otherwise,
the client sends Read(key) to the replica.

3. On receiving Read, the replica returns object and version,
where object is the latest version of key and version is the
timestamp of the transaction that wrote that version.

4. On response, the client puts (key, version) into the transac-
tion’s read set and returns object to the application.
Once the application calls Commit or Abort, the execution

phase finishes. To commit, the TAPIR client coordinates
across all participants – the shards that are responsible for
the keys in the read or write set – to find a single timestamp,
consistent with the strict serial order of transactions, to assign
the transaction’s reads and writes, as follows:
1. The TAPIR client selects a proposed timestamp. Proposed

timestamps must be unique, so clients use a tuple of their
local time and their client id.

2. The TAPIR client invokes Prepare(txn, timestamp) as an
IR consensus operation, where timestamp is the proposed
timestamp and txn includes the transaction id (txn. id)
and the transaction read (txn.read set) and write sets
(txn.write set). The client invokes Prepare on all partici-
pants through IR as a consensus operations.

TAPIR-OCC-CHECK(txn, timestamp)

1 for ∀key,version ∈ txn. read-set
2 if version < store[key]. latest-version
3 return ABORT
4 elseif version < MIN(prepared-writes[key])
5 return ABSTAIN
6 for ∀key ∈ txn.write-set
7 if timestamp < MAX(PREPARED-READS(key))
8 return RETRY, MAX(PREPARED-READS(key))
9 elseif timestamp < store[key]. latestVersion

10 return RETRY, store[key]. latestVersion
11 prepared-list[txn. id] = timestamp
12 return PREPARE-OK

Figure 8: Validation function for checking for OCC conflicts on
Prepare. PREPARED-READS and PREPARED-WRITES get the pro-
posed timestamps for all transactions that the replica has prepared
and read or write to key, respectively.

3. Each TAPIR replica that receives Prepare (invoked by IR
through ExecConcensus) first checks its transaction log for
txn. id. If found, it returns PREPARE-OK if the transaction
committed or ABORT if the transaction aborted.

4. Otherwise, the replica checks if txn. id is already in its
prepared list. If found, it returns PREPARE-OK.

5. Otherwise, the replica runs TAPIR’s OCC validation
checks, which check for conflicts with the transaction’s
read and write sets at timestamp, shown in Figure 8.

6. Once the TAPIR client receives results from all shards, the
client sends Commit(txn, timestamp) if all shards replied
PREPARE-OK or Abort(txn, timestamp) if any shards
replied ABORT or ABSTAIN. If any shards replied RETRY,
then the client retries with a new proposed timestamp (up
to a set limit of retries).

7. On receiving a Commit, the TAPIR replica: (1) commits the
transaction to its transaction log, (2) updates its versioned
store with w, (3) removes the transaction from its prepared
list (if it is there), and (4) responds to the client.

8. On receiving a Abort, the TAPIR replica: (1) logs the
abort, (2) removes the transaction from its prepared list (if
it is there), and (3) responds to the client.

Like other 2PC-based protocols, TAPIR can return the out-
come of the transaction to the application as soon as Prepare
returns from all shards (in Step 6) and send the Commit op-
erations asynchronously. As a result, using IR, TAPIR can
commit a transaction with a single round-trip to all replicas
in all shards.

5.2.2 IR Support
Because TAPIR’s Prepare is an IR consensus operation,
TAPIR must implement a client-side decide function, shown
in Figure 9, which merges inconsistent Prepare results from
replicas in a shard into a single result. TAPIR-DECIDE is
simple: if a majority of the replicas replied PREPARE-OK,
then it commits the transaction. This is safe because no
conflicting transaction could also get a majority of the replicas
to return PREPARE-OK.



TAPIR-DECIDE(results)

1 if ABORT ∈ results
2 return ABORT
3 if count(PREPARE-OK,results)≥ f +1
4 return PREPARE-OK
5 if count(ABSTAIN,results)≥ f +1
6 return ABORT
7 if RETRY ∈ results
8 return RETRY, max(results.retry-timestamp)
9 return ABORT

Figure 9: TAPIR’s decide function. IR runs this if replicas return
different results on Prepare.

TAPIR-MERGE(d,u)

1 for ∀op ∈ d∪u
2 txn = op.args. txn
3 if txn. id ∈ prepared-list
4 DELETE(prepared-list, txn. id)
5 for op ∈ d
6 txn = op.args. txn
7 timestamp = op.args. timestamp
8 if txn. id 6∈ txn-log and op. result = = PREPARE-OK
9 R[op]. result = TAPIR-OCC-CHECK(txn, timestamp)

10 else
11 R[op]. result = op. result
12 for op ∈ u
13 txn = op.args. txn
14 timestamp = op.args. timestamp
15 R[op]. result = TAPIR-OCC-CHECK(txn, timestamp)
16 return R

Figure 10: TAPIR’s merge function. IR runs this function at the
leader on synchronization and recovery.

TAPIR also supports Merge, shown in Figure 10, and
Sync at replicas. TAPIR-MERGE first removes any prepared
transactions from the leader where the Prepare operation is
TENTATIVE. This step removes any inconsistencies that the
leader may have because it executed a Prepare differently –
out-of-order or missed – by the rest of the group.

The next step checks d for any PREPARE-OK results that
might have succeeded on the IR fast path and need to be
preserved. If the transaction has not committed or aborted
already, we re-run TAPIR-OCC-CHECK to check for conflicts
with other previously prepared or committed transactions. If
the transaction conflicts, then we know that its PREPARE-OK
did not succeed at a fast quorum, so we can change it to
ABORT; otherwise, for correctness, we must preserve the
PREPARE-OK because TAPIR may have moved on to the
commit phase of 2PC. Further, we know that it is safe to pre-
serve these PREPARE-OK results because, if they conflicted
with another transaction, the conflicting transaction must have
gotten its consensus result on the IR slow path, so if TAPIR-
OCC-CHECK did not find a conflict, then the conflicting trans-
action’s Prepare must not have succeeded.

Finally, for the operations in u, we simply decide a result
for each operation and preserve it. We know that the leader is

now consistent with f +1 replicas, so it can make decisions
on consensus result for the majority.

TAPIR’s sync function (full description in [46]) runs at
the other replicas to reconcile TAPIR state with the master
records, correcting missed operations or consensus results
where the replica did not agree with the group. It simply
applies operations and consensus results to the replica’s
state: it logs aborts and commits, and prepares uncommitted
transactions where the group responded PREPARE-OK.

5.2.3 Coordinator Recovery
If a client fails while in the process of committing a transac-
tion, TAPIR ensures that the transaction runs to completion
(either commits or aborts). Further, the client may have re-
turned the commit or abort to the application, so we must
ensure that the client’s commit decision is preserved. For
this purpose, TAPIR uses the cooperative termination pro-
tocol defined by Bernstein [6] for coordinator recovery and
used by MDCC [22]. TAPIR designates one of the participant
shards as a backup shard, the replicas in which can serve as a
backup coordinator if the client fails. As observed by MDCC,
because coordinators cannot unilaterally abort transactions
(i.e., if a client receives f +1 PREPARE-OK responses from
each participant, it must commit the transaction), a backup
coordinator can safely complete the protocol without block-
ing. However, we must ensure that no two coordinators for a
transaction are active at the same time.

To do so, when a replica in the backup shard notices a
coordinator failure, it initiates a Paxos round to elect itself
as the new backup coordinator. This replica acts as the pro-
poser; the acceptors are the replicas in the backup shard, and
the learners are the participants in the transaction. Once this
Paxos round finishes, the participants will only respond to
Prepare, Commit, or Abort from the new coordinator, ignoring
messages from any other. Thus, the new backup coordinator
prevents the original coordinator and any previous backup co-
ordinators from subsequently making a commit decision. The
complete protocol is described in our technical report [46].

5.3 Correctness
To prove correctness, we show that TAPIR maintains the
following properties3 given up to f failures in each replica
group and any number of client failures:

• Isolation. There exists a global linearizable ordering of
committed transactions.

• Atomicity. If a transaction commits at any participating
shard, it commits at them all.

• Durability. Committed transactions stay committed,
maintaining the original linearizable order.

We give a brief sketch of how these properties are maintained
despite failures. Our technical report [46] contains a more

3 We do not prove database consistency, as it depends on application invari-
ants; however, strict serializability is sufficient to enforce consistency.



complete proof, as well as a machine-checked TLA+ [26]
specification for TAPIR.

5.3.1 Isolation
We execute Prepare through IR as a consensus opera-
tion. IR’s visibility property guarantees that, given any two
Prepare operations for conflicting transactions, at least one
must execute before the second at a common replica. The sec-
ond Prepare would not return PREPARE-OK from its TAPIR-
OCC-CHECK: IR will not achieve a fast quorum of matching
PREPARE-OK responses, and TAPIR-DECIDE will not receive
enough PREPARE-OK responses to return PREPARE-OK be-
cause it requires at least f +1 matching PREPARE-OK. Thus,
one of the two transactions will abort. IR ensures that the
non-PREPARE-OK result will persist as long as TAPIR does
not change the result in Merge (P3). TAPIR-MERGE never
changes a result that is not PREPARE-OK to PREPARE-OK,
ensuring the unsuccessful transaction will never be able to
succeed.

5.3.2 Atomicity
If a transaction commits at any participating shard, the TAPIR
client must have received a successful PREPARE-OK from
every participating shard on Prepare. Barring failures, it will
ensure that Commit eventually executes successfully at every
participant. TAPIR replicas always execute Commit, even if
they did not prepare the transaction, so Commit will eventually
commit the transaction at every participant if it executes at
one participant.

If the coordinator fails and the transaction has already com-
mitted at a shard, the backup coordinator will see the commit
during the polling phase of the cooperative termination proto-
col and ensure that Commit eventually executes successfully
at the other shards. If no shard has executed Commit yet, the
Paxos round will ensure that all participants stop responding
to the original coordinator and take their commit decision
from the new backup coordinator. By induction, if the new
backup coordinator sends Commit to any shard, it, or another
backup coordinator, will see it and ensure that Commit even-
tually executes at all participants.

5.3.3 Durability
For all committed transactions, either the client or a backup
coordinator will eventually execute Commit successfully as an
IR inconsistent operation. IR guarantees that the Commit will
never be lost (P1) and every replica will eventually execute or
synchronize it. On Commit, TAPIR replicas use the transaction
timestamp included in Commit to order the transaction in their
log, regardless of when they execute it, thus maintaining the
original linearizable ordering.

5.4 TAPIR Extensions
The extended version of this paper [46] describes a number of
extensions to the TAPIR protocol. These include a protocol
for globally-consistent read-only transactions at a timestamp,

and optimizations to support environments with high clock
skew, to reduce the quorum size when durable storage is
available, and to accept more transactions out of order by
relaxing TAPIR’s guarantees to non-strict serializability.

6. Evaluation
In this section, our experiments demonstrate the following:

• TAPIR provides better latency and throughput than con-
ventional transaction protocols in both the datacenter and
wide-area environments.

• TAPIR’s abort rate scales similarly to other OCC-based
transaction protocols as contention increases.

• Clock synchronization sufficient for TAPIR’s needs is
widely available in both datacenter and wide-area environ-
ments.

• TAPIR provides performance comparable to systems with
weak consistency guarantees and no transactions.

6.1 Experimental Setup
We ran our experiments on Google Compute Engine [18]
(GCE) with VMs spread across 3 geographical regions – US,
Europe and Asia – and placed in different availability zones
within each geographical region. Each server has a virtualized,
single core 2.6 GHz Intel Xeon, 8 GB of RAM and 1 Gb NIC.

6.1.1 Testbed Measurements
As TAPIR’s performance depends on clock synchronization
and round-trip times, we first present latency and clock skew
measurements of our test environment. As clock skew in-
creases, TAPIR’s latency increases and throughput decreases
because clients may have to retry more Prepare operations. It
is important to note that TAPIR’s performance depends on the
actual clock skew, not a worst-case bound like Spanner [13].

We measured the clock skew by sending a ping message
with timestamps taken on either end. We calculate skew
by comparing the timestamp taken at the destination to
the one taken at the source plus half the round-trip time
(assuming that network latency is symmetric). The average
RTT between US-Europe was 110 ms; US-Asia was 165 ms;
Europe-Asia was 260 ms. We found the clock skew to be
low, averaging between 0.1 ms and 3.4 ms, demonstrating the
feasibility of synchronizing clocks in the wide area. However,
there was a long tail to the clock skew, with the worst case
clock skew being around 27 ms – making it significant that
TAPIR’s performance depends on actual rather than worst-
case clock skew. As our measurements show, the skew in this
environment is low enough to achieve good performance.

6.1.2 Implementation
We implemented TAPIR in a transactional key-value storage
system, called TAPIR-KV. Our prototype consists of 9094
lines of C++ code, not including the testing framework.

We also built two comparison systems. The first, OCC-
STORE, is a “standard” implementation of 2PC and OCC,



Table 1: Transaction profile for Retwis workload.

Transaction Type # gets # puts workload %

Add User 1 3 5%
Follow/Unfollow 2 2 15%
Post Tweet 3 5 30%
Load Timeline rand(1,10) 0 50%

combined with an implementation of Multi-Paxos [27]. Like
TAPIR, OCC-STORE accumulates a read and write set with
read versions at the client during execution and then runs 2PC
with OCC checks to commit the transaction. OCC-STORE
uses a centralized timestamp server to generate transaction
timestamps, which we use to version data in the multi-
versioned storage system. We verified that this timestamp
server was not a bottleneck in our experiments.

Our second system, LOCK-STORE is based on the Spanner
protocol [13]. Like Spanner, it uses 2PC with S2PL and Multi-
Paxos. The client acquires read locks during execution at
the Multi-Paxos leaders and buffers writes. On Prepare, the
leader replicates these locks and acquires write locks. We use
loosely synchronized clocks at the leaders to pick transaction
timestamps, from which the coordinator chooses the largest
as the commit timestamp. We use the client as the coordinator,
rather than one of the Multi-Paxos leaders in a participant
shard, for a more fair comparison with TAPIR-KV. Lacking
access to TrueTime, we set the TrueTime error bound to 0,
eliminating the need to wait out clock uncertainty and thereby
giving the benefit to this protocol.

6.1.3 Workload
We use two workloads for our experiments. We first test using
a synthetic workload based on the Retwis application [30].
Retwis is an open-source Twitter clone designed to use the
Redis key-value storage system [39]. Retwis has a number
of Twitter functions (e.g., add user, post tweet, get timeline,
follow user) that perform Puts and Gets on Redis. We treat
each function as a transaction, and generate a synthetic
workload based on the Retwis functions as shown in Table 1.

Our second experimental workload is YCSB+T [16], an
extension of YCSB [12] – a commonly-used benchmark for
key-value storage systems. YCSB+T wraps database opera-
tions inside simple transactions such as read, insert or read-
modify-write. However, we use our Retwis benchmark for
many experiments because it is more sophisticated: transac-
tions are more complex – each touches 2.5 shards on average
– and longer – each executes 4-10 operations.

6.2 Single Datacenter Experiments
We begin by presenting TAPIR-KV’s performance within a
single datacenter. We deploy TAPIR-KV and the comparison
systems over 10 shards, all in the US geographic region,
with 3 replicas for each shard in different availability zones.
We populate the systems with 10 million keys and make
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transaction requests with a Zipf distribution (coefficient 0.75)
using an increasing number of closed-loop clients.

Figure 11 shows the average latency for a transaction in
our Retwis workload at different throughputs. At low offered
load, TAPIR-KV has lower latency because it is able to commit
transactions in a single round-trip to all replicas, whereas the
other systems need two; its commit latency is thus reduced
by 50%. However, Retwis transactions are relatively long, so
the difference in transaction latency is relatively small.

Compared to the other systems, TAPIR-KV is able to
provide roughly 3× the peak throughput, which stems directly
from IR’s weak guarantees: it has no leader and does not
require cross-replica coordination. Even with moderately
high contention (Zipf coefficient 0.75), TAPIR-KV replicas
are able to inconsistently execute operations and still agree
on ordering for transactions at a high rate.

6.3 Wide-Area Latency
For wide-area experiments, we placed one replica from each
shard in each geographic region. For systems with leader-
based replication, we fix the leader’s location in the US and
move the client between the US, Europe and Asia. Figure 12
gives the average latency for Retwis transactions using the
same workload as in previous section.

When the client shares a datacenter with the leader, the
comparison systems are faster than TAPIR-KV because TAPIR-
KV must wait for responses from all replicas, which takes
160 ms to Asia, while OCC-STORE and LOCK-STORE can
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commit with a round-trip to the local leader and one other
replica, which is 115 ms to Europe.

When the leader is in a different datacenter, LOCK-STORE
suffers because it must go to the leader on Read for locks,
which takes up to 160 ms from Asia to the US, while OCC-
STORE can go to a local replica on Read like TAPIR-KV. In our
setup TAPIR-KV takes longer to Commit, as it has to contact
the furthest replica, and the RTT between Europe and Asia is
more expensive than two round-trips between US to Europe
(likely because Google’s traffic goes through the US). In fact,
in this setup, IR’s slow path, at two RTT to the two closest
replicas, is faster than its fast path, at one RTT to the furthest
replica. We do not implement the optimization of running the
fast and slow paths in parallel, which could provide better
latency in this case.

6.4 Abort and Retry Rates
TAPIR is an optimistic protocol, so transactions can abort
due to conflicts, as in other OCC systems. Moreover, TAPIR
transactions can also be forced to abort or retry when conflict-
ing timestamps are chosen due to clock skew. We measure the
abort rate of TAPIR-KV compared to OCC-STORE, a conven-
tional OCC design, for varying levels of contention (varying
Zipf coefficients). These experiments run in a single region
with replicas in three availability zones. We supply a constant
load of 5,000 transactions/second.

With a uniform distribution, both TAPIR-KV and OCC-
STORE have very low abort rates: 0.005% and 0.04%, respec-
tively. Figure 13 gives the abort rate for Zipf co-efficients
from 0.5 to 1.0. At lower Zipf co-efficients, TAPIR-KV has
abort rates that are roughly an order of magnitude lower than
OCC-STORE. TAPIR’s lower commit latency and use of opti-
mistic timestamp ordering reduce the time between Prepare

and Commit or Abort to a single round-trip, making transac-
tions less likely to abort.

Under heavy contention (Zipf coefficient 0.95), both
TAPIR-KV and OCC-STORE have moderately high abort rates:
36% and 40%, respectively, comparable to other OCC-based
systems like MDCC [22]. These aborts are primarily due to
the most popular keys being accessed very frequently. For
these workloads, locking-based systems like LOCK-STORE

 0

 2

 4

 6

 8

 10

 0  5000  10000  15000  20000

L
at

en
cy

 (
m

s)

Throughput (transactions/sec)

MongoDB
Cassandra

Redis
TAPIR-KV

Figure 14: Comparison with weakly consistent storage systems.

would make better progress; however, clients would have to
wait for extended periods to acquire locks.

TAPIR rarely needs to retry transactions due to clock skew.
Even at moderate contention rates, and with simulated clock
skew of up to 50 ms, we saw less than 1% TAPIR retries
and negligible increase in abort rates, demonstrating that
commodity clock synchronization infrastructure is sufficient.

6.5 Comparison with Weakly Consistent Systems
We also compare TAPIR-KV with three widely-used even-
tually consistent storage systems, MongoDB [35], Cassan-
dra [25], and Redis [39]. For these experiments, we used
YCSB+T [16], with a single shard with 3 replicas and 1
million keys. MongoDB and Redis support master-slave
replication; we set them to use synchronous replication
by setting WriteConcern to REPLICAS SAFE in MongoDB
and the WAIT command [41] for Redis. Cassandra uses
REPLICATION FACTOR=2 to store copies of each item at any 2
replicas.

Figure 14 demonstrates that the latency and throughput
of TAPIR-KV is comparable to these systems. We do not
claim this to be an entirely fair comparison; these systems
have features that TAPIR-KV does not. At the same time,
the other systems do not support distributed transactions –
in some cases, not even single-node transactions – while
TAPIR-KV runs a distributed transaction protocol that ensures
strict serializability. Despite this, TAPIR-KV’s performance
remains competitive: it outperforms MongoDB, and has
throughput within a factor of 2 of Cassandra and Redis,
demonstrating that strongly consistent distributed transactions
are not incompatible with high performance.

7. Related Work
Inconsistent replication shares the same principle as past
work on commutativity, causal consistency and eventual con-
sistency: operations that do not require ordering are more effi-
cient. TAPIR leverages IR’s weak guarantees, in combination
with optimistic timestamp ordering and optimistic concur-
rency control, to provide semantics similar to past work on
distributed transaction protocols but with both lower latency
and higher throughput.



Table 2: Comparison of read-write transaction protocols in replicated transactional storage systems.

Transaction System Replication Protocol Read Latency Commit Latency Msg At Bottleneck Isolation Level Transaction Model

Spanner [13] Multi-Paxos [27] 2 (leader) 4 2n + reads Strict Serializable Interactive
MDCC [22] Gen. Paxos [28] 2 (any) 3 2n Read-Committed Interactive
Repl. Commit [34] Paxos [27] 2n 4 2 Serializable Interactive
CLOCC [1, 31] VR [37] 2 (any) 4 2n Serializable Interactive
Lynx [47] Chain Repl. [45] – 2n 2 Serializable Stored procedure
TAPIR IR 2 (to any) 2 2 Strict Serializable Interactive

7.1 Replication
Transactional storage systems currently rely on strict consis-
tency protocols, like Paxos [27] and VR [37]. These protocols
enforce a strict serial ordering of operations and no diver-
gence of replicas. In contrast, IR is more closely related to
eventually consistent replication protocols, like Bayou [43],
Dynamo [15] and others [24, 25, 40]. The key difference is
that applications resolve conflicts after they happen with even-
tually consistent protocols, whereas IR consensus operations
allow applications to decide conflicts and recover that deci-
sion later. As a result, applications can enforce higher-level
guarantees (e.g., mutual exclusion, strict serializability) that
they cannot with eventual consistency.

IR is also related to replication protocols that avoid co-
ordination for commutative operations (e.g., Generalized
Paxos [28], EPaxos [36]). These protocols are more general
than IR because they do not require application invariants to
be pairwise. For example, EPaxos could support invariants
on bank account balances, while IR cannot. However, these
protocols consider two operations to commute if their order
does not matter when applied to any state, whereas IR re-
quires only that they produce the same results in a particular
execution. This is a form of state-dependent commutativity
similar to SIM-commutativity [10]. As a result, in the exam-
ple from Section 3.1.3, EPaxos would consider any operations
on the same lock to conflict, whereas IR would allow two
unsuccessful Lock operations to the same lock to commute.

7.2 Distributed Transactions
A technique similar to optimistic timestamp ordering was
first explored by Thomas [44], while CLOCC [1] was the
first to combine it with loosely synchronized clocks. We ex-
tend Thomas’s algorithm to: (1) support multiple shards, (2)
eliminate synchronous disk writes, and (3) ensure availability
across coordinator failures. Spanner [13] and Granola [14]
are two recent systems that use loosely synchronized clocks
to improve performance for read-only transactions and inde-
pendent transactions, respectively. TAPIR’s use of loosely
synchronized clocks differs from Spanner’s in two key ways:
(1) TAPIR depends on clock synchronization only for perfor-
mance, not correctness, and (2) TAPIR’s performance is tied
to the actual clock skew, not TrueTime’s worst-case estimated
bound. Spanner’s approach for read-only transactions com-

plements TAPIR’s high-performance read-write transactions,
and the two could be easily combined.

CLOCC and Granola were both combined with VR [31] to
replace synchronous disk writes with in-memory replication.
These combinations still suffer from the same redundancy –
enforcing ordering both at the distributed transaction and
replication level – that we discussed in Section 2. Other
layered protocols, like the examples shown in Table 2, have a
similar performance limitation.

Some previous work included in Table 2 improves through-
put (e.g., Warp [17], Transaction Chains [47], Tango [5]),
while others improve performance for read-only transactions
(e.g., MegaStore [4], Spanner [13]) or other limited transac-
tion types (e.g., Sinfonia’s mini-transactions [2], Granola’s
independent transactions [14], Lynx’s transaction chains [47],
and MDCC’s commutative transactions [22]) or weaker con-
sistency guarantees [33, 42]. In comparison, TAPIR is the
first transaction protocol to provide better performance (both
throughput and latency) for general-purpose, read-write trans-
actions using replication.

8. Conclusion
This paper demonstrates that it is possible to build distributed
transactions with better performance and strong consistency
semantics by building on a replication protocol with no consis-
tency. We present inconsistent replication, a new replication
protocol that provides fault tolerance without consistency,
and TAPIR, a new distributed transaction protocol that pro-
vides linearizable transactions using IR. We combined IR and
TAPIR in TAPIR-KV, a distributed transactional key-value
storage system. Our experiments demonstrate that TAPIR-KV
lowers commit latency by 50% and increases throughput by
3× relative to conventional transactional storage systems. In
many cases, it matches the performance of weakly-consistent
systems while providing much stronger guarantees.
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