
12

Building Consistent Transactions with Inconsistent

Replication

IRENE ZHANG, Microsoft Research

NAVEEN KR. SHARMA, ADRIANA SZEKERES, and ARVIND KRISHNAMURTHY,

University of Washington

DAN R. K. PORTS, Microsoft Research

Application programmers increasingly prefer distributed storage systems with strong consistency and dis-

tributed transactions (e.g., Google’s Spanner) for their strong guarantees and ease of use. Unfortunately, ex-

isting transactional storage systems are expensive to use—in part, because they require costly replication

protocols, like Paxos, for fault tolerance. In this article, we present a new approach that makes transactional

storage systemsmore affordable:We eliminate consistency from the replication protocol, while still providing

distributed transactions with strong consistency to applications.

We present the Transactional Application Protocol for Inconsistent Replication (TAPIR), the first transac-

tion protocol to use a novel replication protocol, called inconsistent replication, that provides fault tolerance

without consistency. By enforcing strong consistency only in the transaction protocol, TAPIR can commit

transactions in a single round-trip and order distributed transactions without centralized coordination. We

This work is an extended version of the paper by the same title that appeared in SOSP 2015 (Zhang et al. 2015a). The

additional content includes:

(1) A complete description of the IR view change protocol (Section 3.2.2)

(2) A description of the IR client recovery protocol (Section 3.2.3)

(3) A full proof of correctness for IR (Section 3.3)

(4) Additional pseudocode for tapir-exec-consensus, which executes TAPIR’s Prepare operation, and tapir-sync,

which synchronizes replicas with missed IR operations and consensus results. (Section 5)

(5) The complete coordinator recovery protocol for TAPIR (Section 5.2.3)

(6) A full proof of correctness for for TAPIR on IR (Section 5.3)

(7) Extensions to the TAPIR protocol for:

(a) Supporting read-only transactions at a consistent timestamp and Spanner-style linearizable read-only trans-

actions (Section 6.1)

(b) Relaxing from linearizable transaction ordering to serializable (Section 6.2)

(c) Optimizing retry timestamp selections for greater transaction success rates (Section 6.3).

(d) Coping with very high clock skews (Section 6.4)

(8) A full latency and clock skew profile of our Google Compute Engine testbed (Section 7.1.1)

(9) An evaluation of performance during node failures and recovery (Section 7.6)

This work was supported by the National Science Foundation under Grants No. CNS-0963754, No. CNS-1217597, No. CNS-

1318396, No. CNS-1420703, No. CNS-1518702, and No. CNS-1615102, by NSF GRFP and IBM Ph.D. fellowships, and by gifts

from Google and VMware.

Authors’ addresses: I. Zhang and D. R. K. Ports, Microsoft Research, 14820 NE 36th St. Redmond, WA 98052; emails:

Irene.Zhang@microsoft.com, dan@drkp.net; N. K. Sharma, A. Szekeres, and A. Krishnamurthy, Department of Computer

Science & Engineering, Box 352350, University of Washington, Seattle, WA 98195; emails: {naveenks, aaasz, arvind}@cs.

washington.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0734-2071/2018/12-ART12 $15.00

https://doi.org/10.1145/3269981

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

mailto:permissions@acm.org
https://doi.org/10.1145/3269981

12:2 I. Zhang et al.

demonstrate the use of TAPIR in a transactional key-value store, tapir-kv. Compared to conventional sys-

tems, tapir-kv provides better latency and better throughput.

CCS Concepts: • Information systems → Distributed database transactions; • Computer systems

organization → Distributed architectures; Reliability;

Additional Key Words and Phrases: Distributed transactional storage, inconsistent replication, strict

serializability

ACM Reference format:

Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan R. K. Ports. 2018. Build-

ing Consistent Transactions with Inconsistent Replication. ACM Trans. Comput. Syst. 35, 4, Article 12 (De-

cember 2018), 37 pages.

https://doi.org/10.1145/3269981

1 INTRODUCTION

Distributed storage systems provide fault tolerance and availability for large-scale web applica-
tions. Increasingly, application programmers prefer systems that support distributed transactions
with strong consistency to help them manage application complexity and concurrency in a dis-
tributed environment. Several recent systems (Kraska et al. 2013; Baker et al. 2011; Escriva et al.
2013; Cooper et al. 2008) reflect this trend, notably Google’s Spanner system (Corbett et al. 2012),
which guarantees linearizable transaction ordering.1

For application programmers, distributed transactional storage with strong consistency comes
at a price. These systems commonly use replication for fault-tolerance, and replication protocols
with strong consistency, like Paxos, impose a high performance cost, while more efficient, weak
consistency protocols fail to provide strong system guarantees.

Significant prior work has addressed improving the performance of transactional storage
systems—including systems that optimize for read-only transactions (Baker et al. 2011; Corbett
et al. 2012), more restrictive transaction models (Kraska et al. 2013; Aguilera et al. 2007; Cowling
and Liskov 2012), or weaker consistency guarantees (Lloyd et al. 2011; Sovran et al. 2011; Bailis
et al. 2014). However, none of these systems have addressed both latency and throughput for
general-purpose, replicated, read-write transactions with strong consistency.

In this article, we use a new approach to reduce the cost of replicated, read-write transactions
and make transactional storage more affordable for programmers. Our key insight is that existing
transactional storage systems waste work and performance by incorporating a distributed transac-
tion protocol and a replication protocol that both enforce strong consistency. Instead, we show that
it is possible to provide distributed transactions with better performance and the same transaction
and consistency model using replication with no consistency.

To demonstrate our approach, we designed the Transactional Application Protocol for Inconsis-
tent Replication (TAPIR), which uses a new replication technique, inconsistent replication (IR), that
provides fault tolerance without consistency. Rather than an ordered operation log, IR presents an
unordered operation set to applications. Successful operations execute at a majority of the replicas
and survive failures, but replicas can execute them in any order. Thus, IR needs no cross-replica
coordination or designated leader for operation processing. However, unlike eventual consistency,
IR allows applications to enforce higher-level invariants when needed.

Thus, despite IR’s weak consistency guarantees, TAPIR provides linearizable read-write trans-

actions and supports globally-consistent reads across the database at a timestamp—the same

1Spanner’s linearizable transaction ordering is also referred to as strict serializable isolation or external consistency.

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

https://doi.org/10.1145/3269981

Building Consistent Transactions with Inconsistent Replication 12:3

Fig. 1. A common architecture for distributed transactional storage systems today. The distributed transaction

protocol consists of an atomic commitment protocol, commonly Two-Phase Commit (2PC), and a concur-

rency control (CC) mechanism. This runs atop a replication (R) protocol, like Paxos.

guarantees as Spanner. TAPIR efficiently leverages IR to distribute read-write transactions in a
single round-trip and order transactions globally across shards and replicas with no centralized

coordination.

We implemented TAPIR in a new distributed transactional key-value store called tapir-kv,
which supports linearizable transactions over a sharded set of keys. Our experiments found that
tapir-kv had: (1) 50% lower commit latency, (2) more than 3× better throughput compared to sys-
tems using conventional transaction protocols, including an implementation of Spanner’s trans-
action protocol, and (3) comparable performance to MongoDB (MongoDB 2013) and Redis (Redis
2013), widely used eventual consistency systems.

This article makes the following contributions to the design of distributed, replicated transaction
systems:

—We define inconsistent replication, a new replication technique that provides fault tolerance
without consistency.

—We design TAPIR, a new distributed transaction protocol that provides strict serializable
transactions using inconsistent replication for fault tolerance.

—We build and evaluate tapir-kv, a key-value store that combines inconsistent replication
and TAPIR to achieve high-performance transactional storage.

2 OVER-COORDINATION IN TRANSACTION SYSTEMS

Replication protocols have become an important component in distributed storage systems. Mod-
ern storage systems commonly partition data into shards for scalability and then replicate each
shard for fault-tolerance and availability (Baker et al. 2011; Chang et al. 2008; Corbett et al. 2012;
Mahmoud et al. 2013). To support transactions with strong consistency, they must implement
both a distributed transaction protocol—to ensure atomicity and consistency for transactions across
shards—and a replication protocol—to ensure transactions are not lost (provided that no more than
half of the replicas in each shard fail at once). As shown in Figure 1, these systems typically place
the transaction protocol, which combines an atomic commitment protocol and a concurrency con-
trol mechanism, on top of the replication protocol (although alternative architectures have also
occasionally been proposed (Mahmoud et al. 2013)).

Distributed transaction protocols assume the availability of an ordered, fault-tolerant log. This
ordered log abstraction is easily and efficiently implemented with a spinning disk but becomes
more complicated and expensive with replication. To enforce the serial ordering of log operations,
transactional storage systems must integrate a costly replication protocol with strong consistency
(e.g., Paxos (Lamport 2001), Viewstamped Replication (Oki and Liskov 1988) or virtual synchrony
(Birman and Joseph 1987)) rather than a more efficient, weak consistency protocol (Ladin et al.
1992; Saito and Shapiro 2005).

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:4 I. Zhang et al.

Fig. 2. Example read-write transaction using two-phase commit, viewstamped replication, and strict two-phase

locking. Availability zones represent a cluster, datacenter, or geographic region. Each shard holds a partition

of the data stored in the system and has replicas in each zone for fault tolerance. The red, dashed lines

represent redundant coordination in the replication layer.

The traditional log abstraction imposes a serious performance penalty on replicated transac-
tional storage systems, because it enforces strict serial ordering using expensive distributed coordi-
nation in two places: the replication protocol enforces a serial ordering of operations across replicas
in each shard, while the distributed transaction protocol enforces a serial ordering of transactions
across shards. This redundancy impairs latency and throughput for systems that integrate both
protocols. The replication protocol must coordinate across replicas on every operation to enforce
strong consistency; as a result, it takes at least two round-trips to order any read-write transaction.
Further, to efficiently order operations, these protocols typically rely on a replica leader, which can
introduce a throughput bottleneck to the system.

As an example, Figure 2 shows the redundant coordination required for a single read-write trans-
action in a system like Spanner. Within the transaction, Read operations go to the shard leaders
(which may be in other datacenters), because the operations must be ordered across replicas, even
though they are not replicated. To Prepare a transaction for commit, the transaction protocol
must coordinate transaction ordering across shards, and then the replication protocol coordinates
the Prepare operation ordering across replicas. As a result, it takes at least two round-trips to
commit the transaction.

In the TAPIR and IR design, we eliminate the redundancy of strict serial ordering over the two
layers and its associated performance costs. IR is the first replication protocol to provide pure fault

tolerance without consistency. Instead of an ordered operation log, IR presents the abstraction of
an unordered operation set. Existing transaction protocols cannot efficiently use IR, so TAPIR is the
first transaction protocol designed to provide linearizable transactions on IR.

3 INCONSISTENT REPLICATION

IR is an efficient replication protocol designed to be used with a higher-level protocol, like a
distributed transaction protocol. IR provides fault-tolerance without enforcing any consistency

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:5

guarantees of its own. Instead, it allows the higher-level protocol, which we refer to as the appli-

cation protocol, to decide the outcome of conflicting operations and recover those decisions through
IR’s fault-tolerant, unordered operation set.

3.1 IR Overview

IR is similar to other state machine replication-based protocols: application clients invoke
application-provided operations on replicas through IR for fault-tolerance. Note that the applica-
tions for IR are a higher-level protocol, like TAPIR. For example, TAPIR uses IR to invoke prepare
across replicas in a shard to ensure that prepare is fault-tolerant. Application protocols invoke op-
erations through IR in one of two modes:

— inconsistent—IR can execute application operations in any order at replicas. IR guarantees
that successful operations persist across failures. On recovery, IR may re-execute operations
in any order.

—consensus—IR can execute application operations in any order at replicas, but the opera-
tion must return a single consensus result. The consensus result is decided by either a ma-
jority of the replicas returning the same result to the application operation or running an
application provided decide function. Successful operations and their consensus results
persist across failures. On recovery, IR will re-execute operations with the provided con-
sensus result.

inconsistent operations are similar to operations in weak consistency replication protocols: they
can execute in different orders at each replica, and the application protocol must resolve conflicts
afterwards. inconsistent operations do not always return results, and indeed none of the incon-

sistent operations in TAPIR do (save for the optional read-only extension in Section 6.1). If they
do, then each replica independently produces its own result, and the client receives a set of results—
the result returned by each of the replicas that executed the operation. IR does not maintain or
enforce any consistency for these results; it is up to the application protocol to interpret them.

In contrast, consensus operations either require either: (1) the application operation returns
the same result after unordered execution at the replicas, or (2) the application protocol resolves
conflicts with a provided decide function. The decide function can choose result that it wants, even
one that is not returned by any of the replicas’s execution of the operation. IR ensures that the
application can recover the decision after failure by preserving the consensus result. In this way,
consensus operations can serve as the basic building block for the higher-level guarantees of
application protocols. For example, TAPIR decides which conflicting transaction will commit and
which will abort, while IR will ensures that decision persists across failures.

3.1.1 IR Application Protocol Interface. Figure 3 summarizes the IR interfaces at clients
and replicas. Application protocols invoke operations through a client-side IR library us-
ing InvokeInconsistent and InvokeConsensus, and then IR runs operations using the
ExecInconsistent and ExecConsensus upcalls into application functions at the replicas.

If replicas return conflicting/non-matching results for a consensus operation, then IR allows
the application protocol to decide the operation’s outcome by invoking the decide function—passed
in by the application protocol to InvokeConsensus—in the client-side library. The decide function
takes the list of returned results (the candidate results) and returns a single result, which IR ensures
will persist as the consensus result. The application protocol can later recover the consensus result
to find out its decision to conflicting operations.

Because IR replicas can be inconsistent, the application protocol at each replica may need
to “fix” its state periodically. These inconsistencies appear in two ways. First, at each replica,

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:6 I. Zhang et al.

Fig. 3. Summary of IR interfaces and client/replica state.

Fig. 4. IR call flow.

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:7

operations in the record progress through two states. Operations in the tentative state may not
persist (i.e., they may be lost later due to failure) or their results may differ from the consensus
result. Operations in the finalized will never be lost and their result matches the consensus result.
Next, IR replica periodically synchronize to ensure that their records converge and all operations
eventually move to the finalized state (e.g., in case of client failure). Similar to eventual consis-
tency protocols, IR relies on the application to reconcile inconsistent replicas; however, we expect
the application to be a higher-level protocol, like TAPIR, not an end-user application. On synchro-
nization, a designated IR replica, which we call the leader for simplicity, collects records from a
quorum of inconsistent replicas. The leader then upcalls into the application protocol with the
Merge, which merges the collected records into a master record of successful operations and con-
sensus results. The Merge function does not have to be deterministic, because only one leader will
call it at a time. The leader sends the master replica back to the other replicas, which each upcall
into the application protocol with Sync. Sync gives the master record to the application protocol
at each replica to make the replica consistent with the chosen consensus results.

3.1.2 IR Guarantees. We define a successful operation to be one that returns to the application
protocol and a persistent operation to be one that is guaranteed to survive failures. IR will never
return a successful operation back to the application protocol unless it is also persistent. However,
persistent operations may not have been returned successfully back to the application protocol
(e.g., if the application client fails).

The operation set of any IR group is guaranteed to include all persistent operations. We define
an operation X as being visible to an operation Y if one of the replicas executing Y has previously
executed X . IR ensures the following properties for the operation set:

P1. [Fault tolerance]. At any time, every operation in the operation set is in the record of
at least one replica in any quorum of f + 1 non-failed replicas.
P2. [Visibility]. For any two operations in the operation set, at least one is visible to the
other.
P3. [Consensus results]. At any time, the result returned by a successful consensus oper-
ation is in the record of at least one replica in any quorum. The only exception is if the
consensus result has been explicitly modified by the application protocol through Merge,
after which the outcome of Merge will be recorded instead.

IR ensures guarantees are met for up to f simultaneous failures out of 2f + 1 replicas and any
number of client failures. Replicas must be fail-stop, without Byzantine behavior. We assume an
asynchronous network where messages can be lost or delivered out of order. IR does not require
synchronous disk writes during operation execution, ensuring guarantees are maintained even if
clients or replicas lose disks on failure. However, if more than f replicas fail (e.g., in the case of a
power failure), IR can lose data. IR makes progress (operations will eventually become successful)
provided that messages that are repeatedly resent are eventually delivered before the recipients
time out.

3.1.3 Application Protocol Example: Fault-Tolerant Lock Server. As an example, we show how to
build a simple lock server using IR. The lock server’s guarantee is mutual exclusion: a lock cannot
be held by two clients at once. We replicate Lock as a consensus operation and Unlock as an
inconsistent operation. A client application acquires the lock only if Lock successfully returns
ok as a consensus result.

Due to operations executing in different orders on different replicas, clients must use unique
ids (e.g., a tuple of client id and a sequence number) to identify corresponding Lock and Unlock

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:8 I. Zhang et al.

operations and call Unlock if Lock first succeeds. Replicas will therefore be able to later match up
Lock and Unlock operations, regardless of order, and determine the lock’s status.

Note that inconsistent operations are not commutative, because they can have side-effects that
affect the outcome of consensus operations. If an Unlock and Lock execute in different orders at
different replicas, then some replicas might have the lock free, while others might not. If replicas
return different results from Lock, then IR invokes the lock server’s decide function, which re-
turns ok if f + 1 replicas returned ok and no otherwise. IR invokes Merge and Sync only during
synchronization and recovery, so we defer their discussion until Section 3.2.2.

IR’s guarantees ensure correctness for our lock server. P1 ensures that held locks are persistent:
a Lock operation persists at one or more replicas in any quorum. P2 ensures mutual exclusion: for
any two conflicting Lock operations, one is visible to the other in any quorum, so IR will never
receive f + 1 matching ok results. The decide function is designed to only return ok if at f + 1
replicas return ok, so two conflicting Lock operations will never both return ok. P3 ensures that
once the client application receives ok from a Lock, the result will not change. The lock server’s
Merge function will not change it, as we will show later, and IR ensures that the ok will persist in
the record of at least one replica out of any quorum.

3.2 IR Protocol

Figure 3 shows the IR state at the clients and replicas. Each IR client keeps an operation counter,
which, combinedwith the client id, uniquely identifies operations. Each replica keeps an unordered
record of executed operations and results for consensus operations. Replicas add inconsistent op-
erations to their record as tentative and then mark them as finalized once they execute. con-

sensus operations are first marked tentative with the result of locally executing the operation,
then finalized once the record has the consensus result.

IR uses four sub-protocols—operation processing, replica recovery/synchronization, client recov-

ery, and group membership change. We discuss the first three here; the last is identical to that of
Viewstamped Replication (Liskov and Cowling 2012).

3.2.1 Operation Processing. We begin by describing IR’s normal-case inconsistent operation
processing protocol without failures:

(1) The client sends
〈
propose, id, op

〉
to all replicas, where id is the operation id and op is

the operation.
(2) Each replica writes id and op to its record as tentative, then responds to the client with
〈reply, id〉.

(3) Once the client receives f + 1 responses from replicas (retrying if necessary), it returns to
the application protocol and asynchronously sends 〈finalize, id〉 to all replicas. (finalize
can also be piggy-backed on the client’s next message.)

(4) On finalize, replicas upcall into the application protocol with ExecInconsistent(op)
and mark op as finalized.

Due to the lack of consistency, IR can successfully complete an inconsistent operation with a
single round-trip to f + 1 replicas and no coordination across replicas. If the IR client does not
receive a response to its prepare from f + 1 replicas, then it will retry until it does.

Next, we describe the normal-case consensus operation processing protocol, which has both a
fast path and a slow path. IR uses the fast pathwhen it can achieve a fast quorum of � 32 f � + 1 replicas
that return matching results to the operation. Similar to Fast Paxos (Lamport 2006a) and Speculative
Paxos (Ports et al. 2015), IR requires a fast quorum to ensure that a majority of the replicas in any
regular majority quorum agrees to the consensus result. This quorum size is necessary to execute

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:9

operations in a single round-trip when using a replica group of size 2f + 1 (Lamport 2006b); an
alternative would be to use quorums of size 2f + 1 in a system with 3f + 1 replicas.

When IR cannot achieve a fast quorum, either because replicas did not return enough match-
ing results (e.g., if there are conflicting concurrent operations) or because not enough replicas

responded (e.g., if more than
f

2 are down), then it must take the slow path. We describe both
below:

(1) The client sends
〈
propose, id, op

〉
to all replicas.

(2) Each replica calls into the application protocol with ExecConsensus(op) and writes
id , op, and result to its record as tentative. The replica responds to the client with
〈reply, id, result〉.

(3) If the client receives at least � 32 f � + 1 matching results (within a timeout), then it takes the
fast path: the client returns result to the application protocol and asynchronously sends
〈finalize, id, result〉 to all replicas.

(4) Otherwise, the client takes the slow path: once it receives f + 1 responses (retrying if
necessary), then it sends 〈finalize, id, result〉 to all replicas, where result is obtained
from executing the decide function.

(5) On receiving finalize, each replica marks the operation as finalized, updating its record
if the received result is different, and sends 〈confirm, id〉 to the client.

(6) On the slow path, the client returns result to the application protocol once it has received
f + 1 confirm responses.

The fast path for consensus operations takes a single round-trip to � 32 f � + 1 replicas, while the
slow path requires two round-trips to at least f + 1 replicas. Note that IR replicas can execute
operations in different orders and still return matching responses, so IR can use the fast path
without a strict serial ordering of operations across replicas. IR can also run the fast path and slow
path in parallel as an optimization.

3.2.2 Replica Recovery and Synchronization. IR uses a single protocol for recovering failed repli-
cas and running periodic synchronizations. On recovery, we must ensure that the failed replica
applies all operations it may have lost or missed in the operation set, so we use the same protocol
to periodically bring all replicas up-to-date.

To handle recovery and synchronization, we introduce view changes into the IR protocol, similar
to Viewstamped Replication (VR) (Oki and Liskov 1988). These maintain IR’s correctness guaran-
tees across failures. Each IR view change is run by a leader, which is one of the replicas. Leaders
coordinate only view changes, not operation processing. During a view change, the leader has just
one task: to make at least f + 1 replicas up-to-date (i.e., they have applied all operations in the
operation set) and consistent with each other (i.e., they have applied the same consensus results).
IR view changes require a leader, because polling inconsistent replicas can lead to conflicting sets
of operations and consensus results. Thus, the leader must decide on a master record that replicas
can then use to synchronize with each other.

To support view changes, each IR replica maintains a current view, which consists of the identity
of the leader, a list of the replicas in the group, and a (monotonically increasing) view number

uniquely identifying the view. Each IR replica can be in one of the three states: normal, view-
changing, or recovering. Replicas process operations only in the normal state. We make four
additions to IR’s operation processing protocol:

(1) IR replicas send their current view number in every response to clients. For an opera-
tion to be considered successful, the IR client must receive responses with matching view

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:10 I. Zhang et al.

numbers. For consensus operations, the view numbers in reply and confirmmust match
as well. If a client receives responses with different view numbers, then it notifies the repli-
cas in the older view.

(2) On receiving a message with a view number that is higher than its current view, a replica
moves to the view-changing state and requests the master record from any replica in
the higher view. It replaces its own record with the master record and upcalls into the
application protocol with Sync before returning to normal state.

(3) On propose, each replica first checks whether the operation was already finalized by
a view change. If so, then the replica responds with 〈reply, id, finalized, v, [result]〉,
where v is the replica’s current view number and result is the consensus result for con-

sensus operations.
(4) If the client receives replywith a finalized status for consensus operations, then it sends
〈finalize, id, result〉 with the received result and waits until it receives f + 1 confirm
responses in the same view before returning result to the application protocol.

IR’s view change protocol is similar to VR’s. Each view change is coordinated by a leader, which
is unique per view and deterministically chosen. There are three key differences. First, in IR the
leader merges records during a view change rather than simply taking the longest log from the
latest view. The reason for this is that, with inconsistent replicas and unordered operations, any
single record could be incomplete. Second, in VR, the leader is used to process operations in the
normal case, but IR uses the leader only for performing view changes. Finally, on recovery, an IR
replica performs a view change, rather than simply interrogating a single replica. This makes sure
that the recovering replica either receives all operations it might have sent a reply for, or prevents
them from completing.

The full view change protocol follows:

(1) A replica that notices the need for a view change advances its view number and sets its
status to either view-changing or recovering—if the replica just started a recovery.
A replica notices the need for a view change either based on a timeout, because it is a
recovering replica, or because it received a do-view-change message for a view with
a larger number than its own current view-number. It records the new view number to
disk.

(2) The replica then sends a 〈do-view-change, rec, v, v ′〉message to the new leader, except

when the sending replica is a recovering replica. It also sends the same message, without the
rec field, to the other replicas. Here,v identifies the new view,v ′ is the latest view inwhich
the replica’s status was normal, and rec is its unordered record of executed operations.

(3) Once the new leader receives f records from f other replicas, it considers all records with
the highest value of v ′. It uses a a merge function, shown in Figure 5, to join these into a
master record R.

(4) The leader updates its view number to vnew , where vnew is the view number from the
received messages, and its status to normal. It then informs the other replicas of the
completion of the view change by sending a 〈start-view, vnew , R〉, whereR is themaster
record.

(5) When a replica receives a start-view message with vnew greater than or equal to its
current view number, it replaces its own record with R and upcalls into the application
protocol with Sync.

(6) Once Sync is complete, the replica updates its current view number to vnew , records this
to disk, and enters the normal state.

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:11

Fig. 5. Merge function for the master record. The IR leader merges records from all replicas in the latest view,

which is always a strict superset of the records from replicas in lower views.

Merging Records. The ir-merge-records function is used by the new leader to merge the set of
received records. This function is shown in Figure 5. ir-merge-records starts by adding all incon-

sistent operations and consensus operations marked finalized to R and calling Sync into the
application protocol. These operations must persist in the next view, so we first apply them to the
leader, ensuring that they are visible to any operations for which the leader will decide consensus
results next in Merge. As an example, Sync for the lock server matches up all corresponding Lock
and Unlock by id; if there are unmatched Locks, it sets locked = true; otherwise, locked = false.

IR asks the application protocol to decide the consensus result for the remaining tentative
consensus operations, which either (1) have a matching result, which we define as the majority

result, in at least � f

2 � + 1 records, or (2) do not. IR places these operations in d and u, respectively,
and calls Merge(d, u) into the application protocol, which must return a consensus result for every
operation in d and u.

IR must rely on the application protocol to decide consensus results for several reasons. For
operations in d , IR cannot tell whether the operation succeeded with the majority result on the
fast path, or whether it took the slow path and the application protocol decide’d a different result
that was later lost. In some cases, it is not safe for IR to keep the majority result, because it would
violate application protocol invariants. For example, in the lock server, ok could be the majority

result if only � f

2 � + 1 replicas replied ok, but the other replicas might have accepted a conflicting
lock request. However, it is also possible that the other replicas did respond ok, in which case ok
would have been a successful response on the fast-path.

The need to resolve this ambiguity is the reason for the caveat in IR’s consensus property (P3)
that consensus results can be changed in Merge. Fortunately, the application protocol can ensure
that successful consensus results do not change in Merge, simply by maintaining the majority re-
sults in d on Mergeunless they violate invariants. The merge function for the lock server, therefore,
does not change a majority response of ok, unless another client holds the lock. In that case, the
operation in d could not have returned a successful consensus result to the client (either through
the fast or the slow path), so it is safe to change its result.

For operations in u, IR needs to invoke decide but cannot without at least f + 1 results, so uses
Merge instead. The application protocol can decide consensus results in Merge without f + 1
replica results and still preserve IR’s visibility property, because IR has already applied all of the
operations in R and d , which are the only operations definitely in the operation set, at this point.

The leader adds all operations returned from Merge and their consensus results to R, then sends
R to the other replicas, which call Sync(R) into the application protocol and replace their own

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:12 I. Zhang et al.

records with R. The view change is complete after at least f + 1 replicas have exchanged andmerged
records and sync’d with the master record. A replica can only process requests in the new view
(in the normal state) after it completes the view change protocol. At this point, any recovering
replicas can also be considered recovered. If the leader of the view change does not finish the
view change by some timeout, then the group will elect a new leader to complete the protocol by
starting a new view change with a larger view number.

Periodic Synchronization. Synchronizations need to be performed on view changes. It can also
be beneficial to perform them periodically even during normal operation. This reduces the cost of
future synchronizations, as the set of operations they need to process is smaller. This compensates
for an inherent tradeoff in the unordered operation set used by IR. In systems that use a replicated
log, a replica’s state can be entirely characterized by the index of the last executed operation; this
is not true for IR’s operation set. As a result, extra work is needed for Merge and Sync operations,
the latter of which must revisit every unsynchronized operation in the operation set. Periodic
synchronizations help mitigate this cost.

3.2.3 Client Recovery. We assume that clients can lose some or all of their state on failure. On
recovery, a client must ensure that (1) it recovers its latest operation counter, and (2) any operations
that it started but did not finish are finalized. To do so, the recovering client requests the id for
its latest operation from a majority of the replicas. This poll gets the client the largest id that the
group has seen from it, so the client takes the largest returned id and increments it to use as its
new operation counter.

A view change finalizes all tentative operation on the next synchronization, so the client does
not need to finish previously started operations and IR does not have to worry about clients failing
to recover after failure.

3.3 Correctness

For correctness, we show that IR provides the following properties for operations in the operation

set:

P1. [Fault tolerance]. At any time, every operation in the operation set is in the record of
at least one replica in any quorum of f + 1 non-failed replicas.
P2. [Visibility]. For any two consensus operations in the operation set, at least one is
visible to the other.
P3. [Consensus results]. At any time, every successful consensus result is in the record of
at least one replica in any quorum. Again, the only exception being that the application
protocol modified the result through Merge.

IR also provides the following eventual consistency property, which is not necessary for correct-
ness, but is useful for application protocols. As this is a liveness property, it holds only during
periods of synchrony, when messages that are repeatedly resent are eventually delivered before
the recipient times out (Fischer et al. 1985):

P4. [Eventual Consistency]. Given a sufficiently long period of synchrony, any operation in
the operation set (and its consensus result, if applicable) will eventually have executed or
Synced at every non-faulty replica.

In addition to the proof of correctness below, we have also formally specified both IR and TAPIR
in the TLA+ language (Lamport 1994), and model-checked its correctness. The TLA+ specification
is available in a technical report (Zhang et al. 2015b).

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:13

We begin our proof of correctness by defining the following terms:

D1. An operation is applied at a replica if that replica has executed (through
ExecInconsistent or ExecConsensus) or synchronized (through Sync) the operation.
D2. An operation X is visible to a consensus operation Y if one of the replicas providing
candidate results for Y has previously applied X .
D3. The persistent operation set is the set of operations applied at at least one replica in
any quorum of f + 1 non-failed replicas.

We first prove a number of invariants about the persistent operation set. Given these invariants,
we can show that the IR properties hold.

I1. The size of persistent operation set is monotonically increasing.

I1 holds at every replica during normal operation, because replicas never roll back executed
operations. I1 also hold across view changes. The leader merges all operations from the records
of f + 1 non-faulty replicas into the master record, so by quorum intersection, the master record
contains every operation in the persistent operation set. Then, at least f + 1 non-faulty replicas
replace their record with the master record and applies the master record (through Sync), so any
persistent operation before the view change will continue to persist after the view change.

I2. All operations in the persistent operation set are visible to any consensus operation added to

the set.

consensus operations are added to the persistent set by either (1) executing at at least a quorum
of f + 1 replicas or (2) being merged by the leader into the master record. In case 1, by definition,
every operation already in the persistent operation set must be applied at at least 1 replica out of
the quorum and will be visible to the added consensus operation. In case 2, the leader applies all
operations in the persistent operation set (through Sync) before running Merge, ensuring that ev-
ery operation already in the persistent operation set is visible to operations added to the persistent
operation set through Merge.

I3. The result of any consensus operation in the persistent operation set is eitherthe successful

consensus result or the Mergeresult.

The result of any consensus operations in the persistent set is (1) a matching result from exe-
cuting the operation (through ExecConsensus) at a fast quorum of � 32 f � + 1 replicas, (2) a result
from executing the application protocol-specific decide function in the client-side library, or (3) a
result from executing Merge at the leader during a view change. In case 1, the matching result will
be both the result in the persistent operation set and the successful consensus result. The same
holds for the result returned from decide in case 2. During a view change, the leader may get an op-
eration that has already fulfilled either case 1 or case 2, and change the result in Merge. The result
from Merge will be in the record and applied to at least f + 1 replicas. Thus, either the successful
consensus result or, if the application protocol changed the result in Merge, the Merge result, will
continue to persist in the persistent operation set.

I4. All operations and consensus results in the persistent operation set in all previous views must be

applied at a replica before it executes any operations in the new view.

IR clients require that all responses come from replicas in the same view. Thus, if any replica is in
viewv and at least f + 1 other replicas are in a higher viewV > v , that replica cannot successfully
complete an operation until it joins the higher view. To join the higher view, the replica in the
lower view must obtain the master record from a replica in the higher view, and Sync with that
master record. The master record contains all operations in the persistent operation set, so the

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:14 I. Zhang et al.

replica will apply all operations from the persistent operation set before processing operations in
the new view.

Given these four invariants for the persistent operation set, we can show that the four proper-
ties of IR hold. Any operation in the operation set must have executed at (and received matching
responses from) f + 1 of 2f + 1 replicas, so by quorum intersection, all operations in the operation
set must be in the persistent operation set. Thus, I1 directly implies P1, as any operation in the
persistent operation set will continue to be in the set. I1 and I2 imply P2, because for any consen-

sus operation X , all operations added to the persistent operation set before X are visible to X and
X will be visible to all operations added to the persistent operation set after it. I1 and I3 implies P3,
because either the successful consensus result will remain in the persistent operation set or the
Merge result will. I4 implies P4, because if all replicas are non-faulty for long enough, they will
eventually all attempt to participate in processing operations, which will cause them to Sync all
operations in the persistent operation set.

4 BUILDING ATOP IR

IR obtains performance benefits because it offers weak consistency guarantees and relies on ap-
plication protocols to resolve inconsistencies, similar to eventual consistency protocols such as
Dynamo (DeCandia et al. 2007) and Bayou (Terry et al. 1995). However, IR provides an important
benefit over eventual consistency systems, which expect applications to resolve conflicts after they

happen. In addition to inconsistent operations, IR provides consensus operations, which allow
applications to detect and resolve conflicts as they happen. Using consensus operations, applica-
tion protocols can enforce higher-level guarantees (e.g., TAPIR’s linearizable transaction ordering)
across replicas despite IR’s weak consistency.

However, building strong guarantees on IR requires careful application protocol design. IR can-
not support certain application protocol invariants. Moreover, if misapplied, IR can even provide
applications with worse performance than a strongly consistent replication protocol. In this sec-
tion, we discuss the properties that application protocols need to have to correctly and efficiently
enforce higher-level guarantees with IR and TAPIR’s techniques for efficiently providing lineariz-
able transactions.

4.1 IR Application Protocol Requirement: Invariant checks must

be performed pairwise

Application protocols can enforce certain types of invariants with IR, but not others. IR guarantees
that in any pair of consensus operations, at least one will be visible to the other (P2). Thus, IR
readily supports invariants that can be safely checked by examining pairs of operations for con-
flicts. For example, our lock server example can enforce mutual exclusion. However, application
protocols cannot check invariants that require the entire history, because each IR replica may have
an incomplete history of operations. For example, tracking bank account balances and allowing
withdrawals only if the balance remains positive is problematic, because the invariant check must
consider the entire history of deposits and withdrawals.

Despite this seemingly restrictive limitation, application protocols can still use IR to enforce use-
ful invariants, including lock-based concurrency control, like Strict Two-Phase Locking (S2PL). As
a result, distributed transaction protocols like Spanner (Corbett et al. 2012) or Replicated Commit
(Mahmoud et al. 2013) would work with IR. IR can also support optimistic concurrency control
(OCC) (Kung and Robinson 1981), because OCC checks are pairwise as well: each committing
transaction is checked against every previously committed transaction, so consensus operations
suffice to ensure that at least one replica sees any conflicting transaction and aborts the transaction
being checked.

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:15

4.2 IR Application Protocol Requirement: Application protocols must be able to

change consensus operation results

Inconsistent replicas could execute consensus operations with one result and later find the group
agreed to a different consensus result. For example, if the group in our lock server agrees to reject
a Lock operation that one replica accepted, the replica must later free the lock, and vice versa.
As noted in the section on pairwise invariant checks, the group as a whole continues to enforce
mutual exclusion, so these temporary inconsistencies are tolerable and are always resolved by the
end of synchronization.

In TAPIR, we take the same approach with distributed transaction protocols. 2PC-based proto-
cols are always prepared to abort transactions, so they can easily accommodate a Prepare result
changing from prepare-ok to abort. If abort changes to prepare-ok, then it might temporarily
cause a conflict at the replica, which can be correctly resolved, because the group as a whole could
not have agreed to prepare-ok for two conflicting transactions.

Note that IR replicas are not directly informed (via an upcall) if their consensus result changes
as a result of finalization. We use a simple strategy in TAPIR to ensure that replicas, whether they
were part of the Prepare quorum or not, learn the transaction outcome. The Preparemessage is
followed by a Commit or Abort operation, executed as an IR inconsistent operation. This idiom,
in which a client follows a consensus operation with an inconsistent operation indicating the
outcome, is generally useful with IR.

Changing Prepare results does sometimes cause unnecessary aborts. To reduce these, TAPIR
introduces two Prepare results in addition to prepare-ok and abort: abstain and retry.
abstain helps TAPIR distinguish between conflicts with committed transactions, which will not
abort, and conflicts with prepared transactions, which may later abort. Replicas return retry if
the transaction has a chance of committing later. The client can retry the Prepare without re-
executing the transaction.

4.3 IR Performance Principle: Application protocols should not expect operations

to execute in the same order

To efficiently achieve agreement on consensus results, application protocols should not rely on
operation ordering for application ordering. For example, many transaction protocols (Gray and
Lamport 2006; Baker et al. 2011; Kraska et al. 2013) use Paxos operation ordering to determine
transaction ordering. They would perform worse with IR, because replicas are unlikely to agree
on which transaction should be next in the transaction ordering.

In TAPIR, we use optimistic timestamp ordering to ensure that replicas agree on a single transac-
tion ordering despite executing operations in different orders. Like Spanner (Corbett et al. 2012),
every committed transaction has a timestamp, and committed transaction timestamps reflect a lin-
earizable ordering. However, TAPIR clients, not servers, propose a timestamp for their transaction;
thus, if TAPIR replicas agree to commit a transaction, they have all agreed to the same transaction
ordering.

TAPIR replicas use these timestamps to order their transaction logs and multi-versioned stores.
Therefore, replicas can execute Commit in different orders but still converge to the same appli-
cation state. TAPIR leverages loosely synchronized clocks at the clients for picking transaction
timestamps, which improves performance but is not necessary for correctness.

4.4 IR Performance Principle: Application protocols should use cheaper inconsistent

operations whenever possible rather than consensus operations

By concentrating invariant checks in a few operations, application protocols can reduce con-

sensus operations and improve their performance. For example, in a transaction protocol, any

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:16 I. Zhang et al.

Fig. 6. Example read-write transaction in TAPIR. TAPIR executes the same transaction pictured in Figure 2

with less redundant coordination. Reads go to the closest replica and Prepare takes a single round-trip to

all replicas in all shards. TAPIR sends Commit asynchronously, because participants will always come to the

same commit decision (see Section 5.2.3). Overall, TAPIR is able to commit transactions in a single round-trip

to all participating replicas.

operation that decides transaction ordering must be a consensus operation to ensure that repli-
cas agree to the same transaction ordering. For locking-based transaction protocols, this is any
operation that acquires a lock. Thus, every Read and Write must be replicated as a consensus

operation.
TAPIR improves on this by using optimistic transaction ordering and OCC, which reduces con-

sensus operations by concentrating all ordering decisions into a single set of validation checks
at the proposed transaction timestamp. These checks execute in Prepare, which is TAPIR’s only
consensus operation. Commit and Abort are inconsistent operations, while Read and Write are
not replicated.

5 TAPIR

This section details TAPIR. As noted, TAPIR is designed to efficiently leverage IR’sweak guarantees
to provide high-performance linearizable transactions. Using IR, TAPIR can order a transaction in
a single round-trip to all replicas in all participant shards without any centralized coordination.

TAPIR is designed to be layered atop IR in a replicated, transactional storage system. Together,
TAPIR and IR eliminate the redundancy in the replicated transactional system, as shown in
Figure 2. As a comparison, Figure 6 shows the coordination required for the same read-write
transaction in TAPIR with the following benefits: (1) TAPIR does not have any leaders or
centralized coordination; (2) TAPIR Reads always go to the closest replica; and (3) TAPIR Commit
takes a single round-trip to the participants in the common case.

5.1 Overview

TAPIR is designed to provide distributed transactions for a scalable storage architecture. This ar-
chitecture partitions data into shards and replicates each shard across a set of storage servers for

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:17

Fig. 7. Summary of TAPIR interfaces and client and replica state.

availability and fault tolerance. Clients are front-end application servers, located in the same or
another datacenter as the storage servers, not end-hosts or user machines. They have access to a
directory of storage servers using a service like Chubby (Burrows 2006) or ZooKeeper (Hunt et al.
2010) and directly map data to servers using a technique like consistent hashing (Karger et al.
1997).

TAPIR provides a general storage and transaction interface for applications via a client-side
library. Note that TAPIR is the application protocol for IR; applications using TAPIR do not interact
with IR directly.

A TAPIR application Begins a transaction, then executes Reads and Writes during the trans-
action’s execution period. During this period, the application can Abort the transaction. Once it
finishes execution, the application Commits the transaction. Once the application calls Commit,
it can no longer abort the transaction. The 2PC protocol will run to completion, committing or
aborting the transaction based entirely on the decision of the participants. Since TAPIR’s 2PC co-
ordinators are not allowed to alter the decision taken by the participants (e.g., decide to abort the
transaction even if all participants decided to commit), they do not have to be fault-tolerant. This
property allows TAPIR to use clients as 2PC coordinators, as in MDCC (Kraska et al. 2013), to
reduce the number of round-trips to storage servers.

TAPIR provides the traditional ACID guarantees with the strictest level of isolation: strict seri-
alizability (or linearizability) of committed transactions.

5.2 Protocol

TAPIR provides transaction guarantees using a transaction processing protocol, IR functions, and a
coordinator recovery protocol.

Figure 7 shows TAPIR’s interfaces and state at clients and replicas. Replicas keep committed and
aborted transactions in a transaction log in timestamp order; they also maintain a multi-versioned
data store, where each version of an object is identified by the timestamp of the transaction that
wrote the version. TAPIR replicas serve reads from the versioned data store andmaintain the trans-
action log for synchronization and checkpointing. Like other 2PC-based protocols, each TAPIR
replica also maintains a prepared list of transactions that it has agreed to commit.

Each TAPIR client supports one ongoing transaction at a time. In addition to its client id, the
client stores the state for the ongoing transaction, including the transaction id and read and write

sets. The transaction id must be unique, so the client uses a tuple of its client id and transaction

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:18 I. Zhang et al.

Fig. 8. Since Prepare is TAPIR’s only consensus operations, tapir-exec-consensus simply runs TAPIR’s

prepare algorithm at replicas.

counter, similar to IR. TAPIR does not require synchronous disk writes at the client or the replicas,
as clients do not have to be fault-tolerant and replicas use IR.

5.2.1 Transaction Processing. We begin with TAPIR’s protocol for executing transactions.

(1) For Write(key, object), the client buffers key and object in the write set until commit and
returns immediately.

(2) For Read(key), if key is in the transaction’s write set, the client returns object from the
write set. If the transaction has already read key, then it returns a cached copy. Otherwise,
the client sends Read(key) to the replica.

(3) On receiving Read, the replica returns object and version, where object is the latest commit-
ted version of key and version is the timestamp of the transaction that wrote that version.

(4) On response, the client puts (key, version) into the transaction’s read set and returns object

to the application.

Once the application calls Commit or Abort, the execution phase finishes. To commit, the TAPIR
client coordinates across all participants—the shards that are responsible for the keys in the read
or write set—to find a single timestamp, consistent with the strict serial order of transactions, to
assign the transaction’s reads and writes, as follows:

(1) The TAPIR client selects a proposed timestamp. Proposed timestamps must be unique, so
clients use a tuple of their local time and their client id.

(2) The TAPIR client invokes Prepare(txn, timestamp) on all participants as an IR consensus

operation, where timestamp is the proposed timestamp and txn includes the transaction
id (txn.id) and the transaction read (txn.read_set) and write sets (txn.write_set).

(3) Each TAPIR replica that receives Prepare (invoked by IR through ExecConcensus) first
checks its transaction log for txn.id . If found, then it returns prepare-ok if the transaction
committed or abort if the transaction aborted.

(4) Otherwise, the replica checks if txn.id is already in its prepared list. If found, then it returns
prepare-ok.

(5) Otherwise, the replica runs TAPIR’s OCC validation checks, which check for conflicts with
the transaction’s read and write sets at timestamp, shown in Figure 9.

(6) Once the TAPIR client receives results from all shards, the client sends Commit(txn, times-

tamp) if all shards replied prepare-ok or Abort(txn, timestamp) if any shards replied
abort or abstain. If any shards replied retry, then the client retries with a new pro-
posed timestamp (up to a set limit of retries).

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:19

Fig. 9. Validation function for checking for OCC conflicts on Prepare. prepared-reads and prepared −
writes get the proposed timestamps for all transactions that the replica has prepared and read or write to

key, respectively.

Fig. 10. TAPIR’s decide function. IR runs this if replicas return different results on Prepare.

(7) On receiving a Commit, the TAPIR replica: (1) commits the transaction to its transaction
log, (2) updates its versioned store with w , (3) removes the transaction from its prepared
list (if it is there), and (4) responds to the client.

(8) On receiving a Abort, the TAPIR replica: (1) logs the abort, (2) removes the transaction
from its prepared list (if it is there), and (3) responds to the client.

Like other 2PC-based protocols, TAPIR can return the outcome of the transaction to the appli-
cation as soon as Prepare returns from all shards (in Step 6) and send the Commit operations
asynchronously. As a result, using IR, TAPIR can commit a transaction with a single round-trip to
all replicas in all shards.

5.2.2 IR Support. Because TAPIR’s Prepare is an IR consensus operation, TAPIR must im-
plement a client-side decide function, shown in Figure 10, which merges inconsistent Prepare
results from replicas in a shard into a single result. tapir-decide is simple: if a majority of the
replicas (i.e., at least f + 1 out of the total of 2f + 1 replicas) replied prepare-ok, then it commits
the transaction. This is safe because no conflicting transaction could also get a majority of the
replicas to return prepare-ok.

TAPIR also supports Merge, shown in Figure 11, and Sync, shown in Figure 12, at replicas. tapir-
merge first removes any prepared transactions from the leader where the Prepare operation is
tentative (i.e., all operations passed as arguments by the IR merge procedure). This step removes
any inconsistencies that the leader may have, because it executed a Prepare differently—out-of-
order or missed—than the rest of the group.

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:20 I. Zhang et al.

Fig. 11. TAPIR’s merge function. IR runs this function at the leader on synchronization and recovery.

Fig. 12. TAPIR’s function for synchronizing inconsistent replica state. IR runs this on each replica except the

leader during synchronization. r is the replica’s local record.

The next step checksd for any prepare-ok results that might have succeeded on the IR fast path
and need to be preserved. If the transaction has not committed or aborted already, then we re-run
tapir-occ-check to check for conflicts with other previously prepared or committed transactions.
If the transaction conflicts, then we know that its prepare-ok did not succeed at a fast quorum
and is yet to be decided through slow quorum agreement, so we can safely propose an abort;
otherwise, for correctness, we must preserve the prepare-ok, because TAPIR may have moved
on to the commit phase of 2PC. Further, we know that it is safe to preserve these prepare-ok
results, because if they conflicted with another transaction, then the conflicting transaction must

have gotten its consensus result on the IR slow path, so if tapir-occ-check did not find a conflict,
then the conflicting transaction’s Prepare must not have succeeded.

Finally, for the operations in u, we simply decide a result for each operation and preserve it.
We know that the leader is now consistent with f + 1 replicas (which stopped processing new

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:21

requests since the synchronization started), so it can make decisions on consensus result for the
majority.

TAPIR’s sync function, shown in Figure 12, runs at the other replicas to reconcile TAPIR state
with the master records, correcting missed operations or consensus results where the replica did
not agree with the group. It simply applies operations and consensus results to the replica’s state:
it logs aborts and commits, and it prepares uncommitted transactions where the group responded
prepare-ok.

5.2.3 Coordinator Recovery. If a client fails while in the process of committing a transaction,
then TAPIR ensures that the transaction runs to completion (either commits or aborts). Further, the
client may have returned the commit or abort to the application, so wemust ensure that the client’s
commit decision is preserved. For this purpose, TAPIR uses the cooperative termination protocol

defined by Bernstein (Bernstein et al. 1987) for coordinator recovery and used by MDCC (Kraska
et al. 2013). TAPIR designates one of the participant shards as a backup shard, the replicas in which
can serve as a backup coordinator if the client fails. As observed by MDCC, because coordinators
cannot unilaterally abort transactions (i.e., if a client receives f + 1 prepare-ok responses from
each participant, it must commit the transaction), a backup coordinator can safely complete the
protocol without blocking. However, we must ensure that no two coordinators for a transaction
are active at the same time.

Coordinator Changes. Weuse a coordinator change protocol, similar to IR’s view change protocol
to ensure that only one coordinator is active at a time.2 For each transaction, we designate one of
the participant shards as a backup shard. The initial coordinator for every transaction is the client.
In every subsequent view, the currently active backup coordinator is a replica from the backup
shard.

For every transaction in its prepared − list, each TAPIR replica keeps the transaction’s backup
shard and a current coordinator view. Replicas only process and respond to Prepare, Commit and
Abort operations from the active coordinator designated by the current view, identified by index-
ing into the list of backup shard replicas with the coordinator view number. Replicas also keep a
no-vote list with transactions that the replica knows a backup coordinator may abort.

If the current coordinator is suspected to have failed, then any of the participants can initiate
a coordinator change. In doing so, it keeps the client or any previous backup coordinator from
sending operations to the participating replicas. The new coordinator can then poll the participant
using Prepare, and make a commit decision without interference from other coordinators. The
election protocol for a new backup coordinator progresses as follows:

(1) Any replica in any participant shard calls CoordinatorChange through IR as a consen-

sus operation on the backup shard.
(2) Each replica that executes CoordinatorChange through IR, increments and returns its

current coordinator view numberv . If the replica is not already in the coordinator-view-
change state, then it sets its state to coordinator-view-change and stops responding
to operations for that transaction.

(3) The decide function for CoordinatorChange returns the highest v returned by the
replicas.

(4) Once CoordinatorChange returns successfully, the replica sends StartCoordinator
View(vnew), where vnew is the returned view number from CoordinatorChange, as an
IR inconsistent operation to all participant shards, including its own.

2Other possible ways to achieve this goal include logging the currently active backup coordinator to a service like Chubby

(Burrows 2006) or ZooKeeper (Hunt et al. 2010), or giving each backup coordinator a lease in turn.

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:22 I. Zhang et al.

Fig. 13. TAPIR’s decide function for Prepare on coordinator recovery. IR runs this if replicas return different

results on Prepare. This decide function differs from the normal case execution decide, because it is not safe

to return abort unless it is sure the original coordinator did not receive prepare-ok.

(5) Any replica that receives StartCoordinatorView checks ifvnew is higher or equal to its
current view. If so, then the replica updates its current view number and begins accepting
Prepare, Commit and Abort from the active backup coordinator designated by the new
view. If the replica is in the backup shard, then it can set its state back to normal.

(6) When a replica executes StartCoordinatorView for the view where it is the designated
backup coordinator, it begins the cooperative termination protocol.

The Merge function for CoordinatorChange preserves the consensus result if it is greater than
or equal to the current view number at the leader during synchronization. The Sync function for
CoordinatorChange sets the replica state to coordinator-view-change if the consensus result
is larger than the replica’s current view number. The Sync function for StartCoordinatorView
just executes the function: it updates the replica’s current view number if vnew is greater than or
equal to it and sets the state back to normal if the replica is in the backup shard.

Cooperative Termination. The backup coordination protocol executed by the active coordinator is
based on the cooperative termination protocol described by Bernstein (Bernstein et al. 1987), with
several changes to accommodate IR and TAPIR. The most notable changes are that the backup
coordinators do not propose timestamps. If the client successfully prepared the transaction at a
timestamp t (i.e., achieved at least f + 1 prepare-ok in every participant shard), then the transac-
tion will commit at t . Otherwise, the backup coordinator will eventually abort the transaction.

Next, in Bernstein’s algorithm, any single participant can abort the transaction if they have
not yet voted (i.e., replied to a coordinator). However, with IR, no single replica can abort the
transaction without information about the state of the other replicas in the shard. As a result,
replicas return a no-vote response and add the transaction to their no-vote-list. Once a replica
adds a transaction to the no-vote-list, it will always respond no-vote to Prepare operations.
Eventually, all replicas in the shard will either converge to a response (i.e., prepare-ok, abort)
to the original coordinator’s Prepare or to a no-vote response. TAPIR’s modified cooperative
termination protocol proceeds as follows:

(1) The backup coordinator polls the participants with Preparewith no proposed timestamp
by invoking Prepare as a consensus operation in IR with the decide function outlined in
Figure 13.

(2) Any replica that receives Prepare with no propose timestamp, returns prepare-ok if
it has committed or prepared the transaction, abort if it has received an Abort for the
transaction or committed a conflicting transaction and no-vote if it does not have
the transaction in its prepared-list or txn-log. If the replica returns no-vote, then it adds
the transaction to its no-vote-list.

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:23

Fig. 14. TAPIR’s merge function. IR runs this function at the leader on synchronization and recovery. This

version handles no-vote results.

(3) The coordinator continues to send Prepare as an IR operation until it either receives a
abort or prepare-ok from all participant shards. Note that the result will be abort if a
majority of replicas respond no-vote.

(4) If all participant shards return prepare-ok, then the coordinator sends Commit; otherwise,
it sends Abort.

Assuming at least f + 1 replicas are up in each participant shard and shards are able to commu-
nicate, this process will eventually terminate with a backup coordinator sending Commit or Abort
to all participants.

We must also incorporate the no-vote into our Merge and Sync handlers for Prepare. We
make the following changes to Merge for the final function shown in Figure 14: (lines 5 and 6)
delete any tentative no-votes from the no-vote-list at the leader for consistency, (lines 10 and 11)
return no-vote without running tapir-occ-check if the transaction is already in the no-vote-list,
because any result to the original Prepare could not have succeeded (i.e., was not returned to
the coordinator that invoked the Prepare operation), (lines 18 and 19) do the same for operations

without majority result (i.e., the result does not match with the results of at least � f

2 � + 1 of the
merged records), where the original coordinator’s Prepare definitely did not succeed. If the con-
sensus result to the Prepare is no-vote in Sync, then we add transactions to the no-vote-list and
remove it from the prepared-list, as shown in lines 11 and 12 of Figure 15.

5.3 Correctness

To prove correctness, we show that TAPIR maintains the following properties3 given up to f
failures in each replica group and any number of client failures:

3We do not prove database consistency, as it depends on application invariants; however, strict serializability is sufficient

to enforce consistency.

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:24 I. Zhang et al.

Fig. 15. TAPIR’s function for synchronizing inconsistent replica state. IR runs this on each replica except the

leader during synchronization. r is the replica’s local record.

—Isolation. There exists a global linearizable ordering of committed transactions.
—Atomicity. If a transaction commits at any participating shard, then it commits at them all.
—Durability. Committed transactions stay committed, maintaining the original linearizable
order.

A model-checked TLA+ specification of TAPIR and its correctness properties is available in a
technical report (Zhang et al. 2015b).

5.3.1 Isolation. For correctness, we must show that any two conflicting transactions, A and B,
that violate the linearizable transaction ordering cannot both commit. If A and B have a conflict,
then there must be at least one common shard that is participating in bothA and B. We show that,
in that shard, Prepare(A) and Prepare(B) cannot both return prepare-ok, so one transaction
must abort.

In the common shard, IR’s visibility property (P2) guarantees that Prepare(A) must be visible to
Prepare(B) (i.e., executes first at one replica out of every f + 1 quorum) or Prepare(B) is visible to
Prepare(A). Without loss of generality, suppose that Prepare(A) is visible to Prepare(B) and the
group returns prepare-ok to Prepare(A). Any replica that executes tapir-occ-check for bothA
and B will not return prepare-ok for both, so at least one replica out of any f + 1 quorum will not
return prepare-ok to Prepare(B). IR will not get a fast quorum of matching prepare-ok results
for Prepare(B), and TAPIR’s decide function will not return prepare-ok, because it will never
get the f + 1 matching prepare-ok results that it needs. Thus, IR will never return a consensus
result of prepare-ok for Prepare(B). The same holds if Prepare(B) is visible to Prepare(A) and
the group returns prepare-ok to Prepare(B). Thus, IR will never return a successful consensus
result of prepare-ok to executing both Prepare(A) and Prepare(B) in the common participant
shard and TAPIR will not be able to commit both transactions.

Further, once decided, the successful consensus results for Prepare(A) and Prepare(B) will
persist in the record of at least one replica out of every quorum, unless it has been modified by the
application through Merge. TAPIR will never change another result to a prepare-ok, so the shard

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:25

will never respond prepare-ok to both transactions. IR will ensure that the successful consensus
result is eventually Sync’d at all replicas. Once a TAPIR replica prepared a transaction, it will
continue to return prepare-ok until it receives a Commit or Abort for the transaction. As a result,
if the shard returned prepare-ok as a successful consensus result to Prepare(A), then it will never
allow Prepare(B) to also return prepare-ok (unless A aborts), ensuring that B is never able to
commit. The opposite also holds true.

5.3.2 Atomicity. If a transaction commits at any participating shard, then the TAPIR client must
have received a successful prepare-ok from every participating shard on Prepare. Barring fail-
ures, it will ensure that Commit eventually executes successfully at every participant. TAPIR repli-
cas always execute Commit, even if they did not prepare the transaction, so Commitwill eventually
commit the transaction at every participant if it executes at one participant.

If the coordinator fails, then at least one replica in a participant shard will detect the failure
and initiate the coordinator recovery protocol. Assuming no more than f simultaneous failures
in the backup shard, the coordinator change protocol will eventually pick a new active backup
coordinator from the backup shard. At this point, the participants will have stopped processing
operations from the client and any previous backup coordinators.

Backup coordinators do not propose timestamps, so if any replica in a participant shard received
a Commit, then the client’s Preparemust have made it into the operation set of every participant
shard with prepare-ok as the consensus result. IR’s consensus result and eventual consistency
properties (P3 and P4) ensure that the prepare-ok will eventually be applied at all replicas in
every participant shard and TAPIR ensures that successful prepare-ok results are not changed
in Merge (as shown above). Once a TAPIR replica applies prepare-ok, it will continue to return
prepare-ok, so once replicas in participant groups have stopped processing operations from pre-
vious coordinators, all non-failed replicas in all shards will eventually return prepare-ok. As a
result, the backup coordinator must eventually receive prepare-ok as well from all participants.

In the meantime, the backup coordinator is guaranteed to not receive an abort from a partic-
ipant shard. A participant shard will only return an abort if: (1) a conflicting transaction com-
mitted, (2) a majority of the replicas return no-vote, because they did not have a record of the
transaction, or (3) the transaction was aborted on the shard. Case (1) is not possible, because the
conflicting transaction could not have also received a successful consensus result of prepare-ok
(based on our isolation proof) and IR’s consensus result property (P3) ensures that the conflicting
transaction could never get a prepare-ok consensus result, so the conflicting transaction cannot
commit. Case (2) is not possible, because the client could not have received prepare-ok as a con-
sensus result if a majority of the replicas do not have the transaction in their prepared-list and
IR’s P3 and P4 ensures the transaction eventually makes its way into the prepared-list of every
replica. Case (3) is not possible, because the client could not have sent Abort if it got prepare-
ok from all participant shards and no previous backup coordinator could have sent Abort, be-
cause cases (1) and (2) will never happen. As a result, the backup coordinator will not abort the
transaction.

5.3.3 Durability. For all committed transactions, either the client or a backup coordinator will
eventually execute Commit successfully as an IR inconsistent operation. IR guarantees that the
Commit will never be lost (P1) and every replica will eventually execute or synchronize it. On
Commit, TAPIR replicas use the transaction timestamp included in Commit to order the transaction
in their log, regardless of when they execute it, thus maintaining the original linearizable ordering.
If there are no coordinator failures, then a transaction would eventually be finalized through an IR
inconsistent operation (Commit/Abort), which ensures that the decision would never be lost. As

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:26 I. Zhang et al.

described above, for coordinator failures, the coordinator recovery protocol ensures that a backup
coordinator would eventually send Commit or Abort to all participants.

6 TAPIR EXTENSIONS

We now describe four useful extensions to TAPIR.

6.1 Read-Only Transactions

Since it uses a multi-versioned store, TAPIR easily supports globally consistent read-only transac-
tions at a given snapshot timestamp. However, since TAPIR replicas are inconsistent, it is important
to ensure that: (1) reads are up-to-date and (2) later write transactions do not invalidate the reads.
To achieve these properties, TAPIR replicas keep a read timestamp for each object.

TAPIR’s read-only transactions have a single round-trip fast path that sends the Read to only
one replica. If that replica has a validated version of the object—where thewrite timestamp precedes
the snapshot timestamp and the read timestamp follows the snapshot timestamp—then we know
that the returned object is valid, because it is up-to-date, and will remain valid, because it will not
be overwritten later. If the replica lacks a validated version, then TAPIR uses the slow path and
executes a QuorumRead through IR as an inconsistent operation. Note that this is an instance of
a inconsistent operation with return values, which we have not used previously. Recall that such
an operation returns a result set containing results from at least f + 1 replicas.

A QuorumRead operation returns the state of an object at the replica. It is performed with re-
spect to a snapshot timestamp. In addition, it updates the read timestamp stored at each replica.
As a result, it ensures that at least f + 1 replicas will not subsequently accept writes that would
invalidate the read.

More precisely, the protocol for read-only transactions follows:

(1) The TAPIR client chooses a snapshot timestamp for the transaction; for example, the
client’s local time.

(2) The client sends Read(key,version), where key is what the application wants to read and
version is the snapshot timestamp.

(3) If the replica has a validated version of the object, then it returns it. Otherwise, it returns
a failure.

(4) If the client could not get the value from the replica, then it executes a QuorumRead
(key,version) through IR as an inconsistent operation.

(5) Any replica that receives QuorumRead returns the latest version of the object from the
data store. It also writes the Read to the transaction log and updates the data store to
ensure that it will not prepare for transactions that would invalidate the Read.

(6) The client returns the object with the highest timestamp to the application.

As a brief sketch of correctness, it is always safe to read a version of the key that is validated at
the snapshot timestamp. The version will always be valid at the snapshot timestamp, because the
write timestamp for the version is earlier than the snapshot timestamp and the read timestamp is
after the snapshot timestamp. If the replica does not have a validated version, then the replicated
QuorumRead ensures that (1) the client gets the latest version of the object (because at least 1 of
any f + 1 replicas must have it), and (2) a later write transaction cannot overwrite the version
(because at least 1 of the f + 1 QuorumRead replicas will block it).

Since TAPIR also uses loosely synchronized clocks, it could be combined with Spanner’s algo-
rithm for providing externally consistent read-only transactions as well. This combination would
require Spanner’s TrueTime technology and waits at the client for the TrueTime uncertainty
bound. Note that while TAPIR itself provides external consistency for read-write transactions

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:27

regardless of clock skew, this read-only protocol would provide linearizability guarantees only
if the clock skew did not exceed the TrueTime bound, like Spanner (Corbett et al. 2012).

6.2 Serializability

TAPIR is restricted in its ability to accept transactions out of order, because it provides lineariz-
ability, i.e., strict serializability. Thus, TAPIR replicas cannot accept writes that are older than the
last write for the same key, and they cannot accept reads of older versions of the same key.

However, if TAPIR’s guarantees were weakened to (non-strict) serializability, then it can then
accept proposed timestamps any time in the past as long as they respect the serializable trans-
action ordering. This increases the number of updates that can be accepted in highly concurrent
workloads. Implementing this optimization requires tracking the timestamp of the transaction that
last read and wrote each version.

With this optimization, TAPIR can now accept (1) reads of past versions, as long as the read
timestamp precedes the write timestamp of the next version, and (2) writes in the past (per the
Thomas Write Rule (Thomas 1979)), as long as the write timestamp follows the read timestamp of
the previous version and precedes the write timestamp of the next version.

6.3 Retry Timestamp Selection

The proposed timestamp for a given transaction determines whether the participant replicas will
accept the transaction: It will be rejected if a transaction with lower timestamp has already been
processed. Normally, clients use their local clocks to select timestamps; assuming that all clients
have loosely synchronized clocks, this provides fairness.

Alternatively, a client can increase the likelihood that participant replicas will accept its pro-
posed timestamp by proposing a very large timestamp; this decreases the likelihood that the par-
ticipant replicas have already accepted a higher timestamp. The downside to this approach is that
other clients’ transactions will be rejected until their clocks pass that higher timestamp, poten-
tially creating a starvation problem. As a balance, we propose that clients increment their pro-
posed timestamp by an exponentially weighted amount on each retry. This decreases the chances
of any individual transaction being forced to retry forever, while balancing against starvation risk
for other transactions.

6.4 Tolerating Very High Skew

If there is significant clock skew between servers and clients, then TAPIR can employ a batching
protocol of sorts at the participant replicas to decrease the likelihood that transactions will arrive
out of timestamp order. On receiving each Prepare message, the participant replica can wait (for
the estimated clock error-bound period) to see if any other transactions with smaller timestamps
will arrive. After the wait, the replica can process transactions in timestamp order. This wait in-
creases the chances that the participant replica can process transactions in timestamp order and
decreases the number of transactions that it will have to reject for arriving out of order.

7 EVALUATION

In this section, our experiments demonstrate the following:

—TAPIR provides better latency and throughput than conventional transaction protocols in
both the datacenter and wide-area environments.

—TAPIR’s abort rate scales similarly to other OCC-based transaction protocols as contention
increases.

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:28 I. Zhang et al.

Table 1. Measured RTTs and Clock Skews between

Google Compute Engine VMs

Latency (ms) Clock Skew (ms)

U.S. Europe Asia U.S. Europe Asia

U.S. 1.2 111.3 166.5 3.4 1.3 1.86
Europe – 0.8 261.8 – 0.1 1.9

Asia – – 10.8 – – .3

—Clock synchronization sufficient for TAPIR’s needs is widely available in both datacenter
and wide-area environments.

—TAPIR provides performance comparable to systems with weak consistency guarantees and
no transactions.

7.1 Experimental Setup

We ran our experiments on Google Compute Engine (GCE) with VMs spread across three geo-
graphical regions—U.S., Europe, and Asia—and placed in different availability zones within each
geographical region. Each server has a virtualized, single core 2.6GHz Intel Xeon, 8GB of RAM,
and 1Gb NIC.

7.1.1 Testbed Measurements. As TAPIR’s performance depends on clock synchronization and
round-trip times, we first present latency and clock skew measurements of our test environment.
As clock skew increases, TAPIR’s latency increases and throughput decreases, because clients may
have to retry more Prepare operations. It is important to note that TAPIR’s performance depends
on the actual clock skew, not a worst-case bound like Spanner (Corbett et al. 2012).

We measured the clock skew by sending a ping message with timestamps taken on either end.
We calculate skew by comparing the timestamp taken at the destination to the one taken at the
source plus half the round-trip time (assuming that network latency is symmetric). Table 1 re-
ports the average skew and latency between the three geographic regions. Within each region,
we average over the availability zones. Our VMs benefit from Google’s reliable wide-area network
infrastructure; although we use UDP for RPCs over the wide-area, we saw negligible packet drops
and little variation in round-trip times.

The average RTT between U.S.-Europe was 110ms; U.S.-Asia was 165ms; Europe-Asia was
260ms. We found the clock skew to be low, averaging between 0.1 and 3.4ms, demonstrating the
feasibility of synchronizing clocks in the wide area. However, there was a long tail to the clock
skew, with the worst case clock skew being around 27ms—making it significant that TAPIR’s per-
formance depends on actual rather than worst-case clock skew. As our measurements show, the
skew in this environment is low enough to achieve good performance.

7.1.2 Implementation. We implemented TAPIR in a transactional key-value storage system,
called tapir-kv. Our prototype consists of 9,094 lines of C++ code, not including the testing frame-
work.

We also built two comparison systems. The first, occ-store, is a “standard” implementation of
2PC and OCC, combined with an implementation of Multi-Paxos (Lamport 2001). Like TAPIR, occ-
store accumulates a read and write set with read versions at the client during execution and then
runs 2PC with OCC checks to commit the transaction. occ-store uses a centralized timestamp
server to generate transaction timestamps, which we use to version data in the multi-versioned
storage system. We verified that this timestamp server was not a bottleneck in our experiments.

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:29

Table 2. Transaction Profile for Retwis Workload

Transaction Type # gets # puts workload %

Add User 1 3 5%
Follow/Unfollow 2 2 15%
Post Tweet 3 5 30%
Load Timeline rand(1,10) 0 50%

Our second system, lock-store, is based on the Spanner protocol (Corbett et al. 2012). Like
Spanner, it uses 2PC with S2PL and Multi-Paxos. The client acquires read locks during execution
at the Multi-Paxos leaders and buffers writes. On Prepare, the leader replicates these locks and
acquires write locks. We use loosely synchronized clocks at the leaders to pick transaction times-
tamps, from which the coordinator chooses the largest as the commit timestamp. We use the client
as the coordinator, rather than one of the Multi-Paxos leaders in a participant shard, for a more
fair comparison with tapir-kv. Lacking access to TrueTime, we set the TrueTime error bound to 0,
eliminating the need to wait out clock uncertainty and thereby giving the benefit to this protocol.

7.1.3 Workload. We use two workloads for our experiments. We first test using a synthetic
workload based on the Retwis application (Leau 2013). Retwis is an open-source Twitter clone
designed to use the Redis key-value storage system (Redis 2013). Retwis has a number of Twitter
functions (e.g., add user, post tweet, get timeline, follow user) that perform Puts and Gets on Redis.
We treat each function as a transaction, and generate a synthetic workload based on the Retwis
functions as shown in Table 2.

Our second experimental workload is YCSB+T (Dey et al. 2014), an extension of YCSB (Cooper
et al. 2010)—a commonly used benchmark for key-value storage systems. YCSB+T wraps database
operations inside simple transactions such as read, insert or read-modify-write. However, we use
our Retwis benchmark for many experiments, because it is more sophisticated: transactions are
more complex—each touches 2.5 shards on average—and longer—each executes 4–10 operations.

7.2 Single Datacenter Experiments

We begin by presenting tapir-kv’s performance within a single datacenter. We deploy tapir-kv
and the comparison systems over 10 shards, all in the U.S. geographic region, with three repli-
cas for each shard in different availability zones. We populate the systems with 10M keys and
make transaction requests with a Zipf distribution (coefficient 0.75) using an increasing number
of closed-loop clients.

Figure 16 shows the average latency for a transaction in our Retwis workload at different
throughputs. At low offered load, tapir-kv has lower latency, because it is able to commit transac-
tions in a single round-trip to all replicas, whereas the other systems need two; its commit latency
is thus reduced by 50%. However, Retwis transactions are relatively long, so the difference in trans-

action latency is relatively small.
Compared to the other systems, tapir-kv is able to provide roughly 3× the peak throughput,

which stems directly from IR’s weak guarantees: it has no leader and does not require cross-replica
coordination. Even with moderately high contention (Zipf coefficient 0.75), tapir-kv replicas are
able to inconsistently execute operations and still agree on ordering for transactions at a high rate.

7.3 Wide-Area Latency

For wide-area experiments, we placed one replica from each shard in each geographic region. For
systems with leader-based replication, we fix the leader’s location in the U.S. and move the client

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:30 I. Zhang et al.

Fig. 16. Average Retwis transaction Latency (Zipf coefficient 0.75) versus throughput within a datacenter.

Fig. 17. Average wide-area latency for Retwis transactions, with leader located in the U.S. and client in U.S.,

Europe, or Asia.

between the U.S., Europe, and Asia. Figure 17 gives the average latency for Retwis transactions
using the same workload as in previous section.

When the client shares a datacenter with the leader, the comparison systems are faster than
tapir-kv, because tapir-kv must wait for responses from all replicas, which takes 160ms to Asia,
while occ-store and lock-store can commit with a round-trip to the local leader and one other
replica, which is 115ms to Europe.

When the leader is in a different datacenter, lock-store suffers, because it must go to the leader
on Read for locks, which takes up to 160ms from Asia to the U.S., while occ-store can go to a
local replica on Read like tapir-kv. In our setup tapir-kv takes longer to Commit, as it has to
contact the furthest replica, and the RTT between Europe and Asia is more expensive than two
round-trips between U.S. to Europe (likely because Google’s traffic goes through the U.S.). In fact,
in this setup, IR’s slow path, at two RTT to the two closest replicas, is faster than its fast path, at
one RTT to the furthest replica. We do not implement the optimization of running the fast and
slow paths in parallel, which could provide better latency in this case.

7.4 Abort and Retry Rates

TAPIR is an optimistic protocol, so transactions can abort due to conflicts, as in other OCC systems.
Moreover, TAPIR transactions can also be forced to abort or retry when conflicting timestamps
are chosen due to clock skew. We measure the abort rate of tapir-kv compared to occ-store,
a conventional OCC design, for varying levels of contention (varying Zipf coefficients). These

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:31

Fig. 18. Abort rates at varying Zipf co-efficients with a constant load of 5,000 transactions/second in a single

datacenter. This graph excludes lock-store, which does not abort.

experiments run in a single region with replicas in three availability zones. We supply a constant
load of 5,000 transactions/second.

With a uniform distribution, both tapir-kv and occ-store have very low abort rates: 0.005%
and 0.04%, respectively. Figure 18 gives the abort rate for Zipf co-efficients from 0.5 to 1.0. At lower
Zipf co-efficients, tapir-kv has abort rates that are roughly an order of magnitude lower than occ-
store. TAPIR’s lower commit latency and use of optimistic timestamp ordering reduce the time
between Prepare and Commit or Abort to a single round-trip, making transactions less likely to
abort.

Under heavy contention (Zipf coefficient 0.95), both tapir-kv and occ-store have moderately
high abort rates: 36% and 40%, respectively, comparable to other OCC-based systems like MDCC
(Kraska et al. 2013). These aborts are primarily due to the most popular keys being accessed
very frequently. For these workloads, locking-based systems like lock-store would make better
progress; however, clients would have to wait for extended periods to acquire locks.

TAPIR rarely needs to retry transactions due to clock skew. Even at moderate contention rates,
and with simulated clock skew of up to 50ms, we saw less than 1% TAPIR retries and negligi-
ble increase in abort rates, demonstrating that commodity clock synchronization infrastructure is
sufficient.

7.5 Comparison with Weakly Consistent Systems

We also compare tapir-kv with three widely used eventually consistent storage systems, Mon-
goDB (MongoDB 2013), Cassandra (Lakshman and Malik 2010), and Redis (Redis 2013). For these
experiments, we used YCSB+T (Dey et al. 2014), with a single shard with three replicas and 1M
keys. MongoDB and Redis support master-slave replication; we set them to use synchronous
replication by setting WriteConcern to REPLICAS_SAFE in MongoDB and the WAIT command
(Sanfilippo 2013) for Redis. Cassandra uses REPLICATION_FACTOR=2 to store copies of each item
at any 2 replicas. We chose to use synchronous replication to give similar fault-tolerance guar-
antees to tapir-kv, i.e., that an update is recorded to multiple replicas before being considered
committed. Nevertheless, it provides weaker consistency guarantees.

Figure 19 demonstrates that the latency and throughput of tapir-kv is comparable to these
systems. We do not claim this to be an entirely fair comparison; these systems have features that
tapir-kv does not. At the same time, the other systems do not support distributed transactions—
in some cases, not even single-node transactions—while tapir-kv runs a distributed transac-
tion protocol that ensures strict serializability. Despite this, tapir-kv’s performance remains

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:32 I. Zhang et al.

Fig. 19. Comparison with weakly consistent storage systems using the YCSB+T benchmark with one shard,

three replicas, and 1M keys.

Fig. 20. Performance of TAPIR recovery protocol. One replica is failed at t = 5s, and restarted at t = 10s.

competitive: it outperforms MongoDB, and has throughput within a factor of 2 of Cassandra and
Redis, demonstrating that strongly consistent distributed transactions are not incompatible with
high performance.

7.6 Performance under Recovery

We studied the effect of TAPIR’s recovery mechanism on the protocol performance by measuring
transaction throughput and commit latency while a replica has crashed and is recovering. For this
experiment, we use a simple setup of a single shard with three replicas and a workload consisting
of single key read-modify-write transactions. Each replica contains 1M keys and every transaction
chooses a key at random uniformly. We kill one of the replicas 5s into the experiment and restart it
5s later at t = 10s. The restarting replica reloads all keys back into memory and runs the recovery
protocol before beginning to process transactions again.

Figure 20 shows the drop in throughput and increase in latency when a single replica becomes
unresponsive. The overall throughput drops, because each transaction takes the slow path, requir-
ing one extra message to be processed to commit every transaction at each replica. The latency
increases for the same reason, because the slow path requires every transaction to take an extra
round-trip to commit. However, the main cause of the latency increase shown in Figure 20 is that
each TAPIR client only begins the slow path protocol after a fixed timeout—here, 2ms. The increase
in latency is directly dependent on this timeout. Reducing it would lead to a lower latency penalty
during failures, but setting it too low would cause unnecessary messages to be transmitted by the

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:33

client and processed by each replica, as the slow path requires an additional exchange of messages.
In the extreme, it may be possible to start the fast path and slow path in parallel. This would of-
fer benefits in environments with highly skewed pairwise latency, where executing a multiround
protocol among a simple majority of replicas may still offer lower latency than a single round to a
supermajority of replicas, a classic problem for Fast Paxos-like protocols (Junqueira et al. 2007).

8 RELATED WORK

Inconsistent replication shares the same principle as past work on commutativity, causal consis-
tency and eventual consistency: Operations that do not require ordering are more efficient. TAPIR
leverages IR’s weak guarantees, in combination with optimistic timestamp ordering and optimistic
concurrency control, to provide semantics similar to past work on distributed transaction protocols
but with both lower latency and higher throughput.

8.1 Replication

Transactional storage systems currently rely on strict consistency protocols, like Paxos (Lamport
2001) and VR (Oki and Liskov 1988). These protocols enforce a strict serial ordering of opera-
tions and no divergence of replicas. IR is most closely related to quorum systems (Gifford 1979;
Malkhi and Reiter 1998), which achieve durability by making sufficient copies of a data. Like IR’s
inconsistent operations, these systems canmake operations durable more rapidly than consensus
protocols, but do not guarantee strict serial ordering. IR’s consensus operations achieve single-
round consensus in the absence of contention, like Fast Paxos (Lamport 2006a) or Bosco (Song and
van Renesse 2008). When replicas disagree on the consensus result, it falls back to a two-round
slow path; a similar hybrid approach was used for the Byzantine environment by HQ Replication
(Cowling et al. 2006).

IR is also closely related to eventually consistent replication protocols, like Bayou (Terry et al.
1995), Dynamo (DeCandia et al. 2007), and others (Ladin et al. 1992; Saito and Shapiro 2005;
Lakshman and Malik 2010). The key difference is that applications resolve conflicts after they hap-
pen with eventually consistent protocols, whereas IR consensus operations allow applications to
decide conflicts and recover that decision later. As a result, applications can enforce higher-level
guarantees (e.g., mutual exclusion, strict serializability) that they cannotwith eventual consistency.

IR is also related to replication protocols that avoid coordination for commutative operations (e.g.,
Generalized Paxos (Lamport 2005), EPaxos (Moraru et al. 2013)). These protocols are more general
than IR, because they do not require application invariants to be pairwise. For example, EPaxos
could support invariants on bank account balances, while IR cannot. However, these protocols
consider two operations to commute if their order does not matter when applied to any state,
whereas IR requires only that they produce the same results in a particular execution. This is a
form of state-dependent commutativity similar to SIM-commutativity (Clements et al. 2013). As
a result, in the example from Section 3.1.3, EPaxos would consider any operations on the same
lock to conflict, whereas IR would allow two unsuccessful Lock operations to the same lock to
commute.

8.2 Distributed Transactions

A technique similar to optimistic timestamp orderingwas first explored by Thomas (Thomas 1979),
while CLOCC (Adya et al. 1995) was the first to combine it with loosely synchronized clocks. We
extend Thomas’s algorithm to: (1) support multiple shards, (2) eliminate synchronous disk writes,
and (3) ensure availability across coordinator failures. Spanner (Corbett et al. 2012) and Granola
(Cowling and Liskov 2012) are two recent systems that use loosely synchronized clocks to improve
performance for read-only transactions and independent transactions, respectively. TAPIR’s use

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:34 I. Zhang et al.

Table 3. Comparison of Read-write Transaction Protocols in Replicated Transactional Storage Systems

Transaction
System

Replication
Protocol

Read
Latency

Commit
Latency

Msg At
Bottleneck

Isolation
Level

Transaction
Model

Spanner Multi-Paxos 2 (leader) 4 2n + reads Strict Serializable Interactive

MDCC Gen. Paxos 2 (any) 3 2n Read-Committed Interactive

Repl. Commit Paxos 2n 4 2 Serializable Interactive

CLOCC VR 2 (any) 4 2n Serializable Interactive

Lynx Chain Repl. – 2n 2 Serializable Stored procedure

TAPIR IR 2 (to any) 2 2 Strict Serializable Interactive

of loosely synchronized clocks differs from Spanner’s in two key ways: (1) TAPIR depends on
clock synchronization only for performance, not correctness, and (2) TAPIR’s performance is tied
to the actual clock skew, not TrueTime’s worst-case estimated bound. Spanner’s approach for
read-only transactions complements TAPIR’s high-performance read-write transactions, and the
two could be easily combined. Like TAPIR and CLOCC, Clock-SI (Du et al. 2013) uses loosely
synchronized clocks to implement an optimistic concurrency control protocol, and its performance
depends on the actual rather than worst-case clock skew. However, it provides a weaker isolation
level (snapshot isolation (Berenson et al. 1995) rather than strict serializability); it also does not
incorporate replication.

CLOCC and Granola were both combined with VR (Liskov et al. 1999) to replace synchro-
nous disk writes with in-memory replication. These combinations still suffer from the same
redundancy—enforcing ordering both at the distributed transaction and replication level—that we
discussed in Section 2. Other layered protocols, like the examples shown in Table 3, have a similar
performance limitation.

Recent work has applied new hardware technologies to support faster transaction processing.
In particular, FaRM (Dragojević et al. 2014, 2015) uses high-performance RDMA networks to build
a strict serializable transaction processing protocol. It optimizes for the local cluster network,
where latency is far lower; in this environment, minimizing the number of message exchanges
(as TAPIR does) is less critical. DrTM (Wei et al. 2015; Chen et al. 2016) combines RDMA networks
with hardware transactional memory to accelerate concurrency control checks on multicore ma-
chines; this approach could be used to extend TAPIR to the multicore setting. Finally, Eris (Li et al.
2017) uses an in-network sequencer (Li et al. 2016) co-designed with a concurrency control to
provide coordination-free execution of independent transactions. Inspired by TAPIR, Eris com-
bines both replication and concurrency control into a single protocol to minimize the overhead of
both.

Some previous work included in Table 3 improves throughput (e.g., Warp (Escriva et al. 2013),
Transaction Chains (Zhang et al. 2013), Tango (Balakrishnan et al. 2013)), while others improve
performance for read-only transactions (e.g., MegaStore (Baker et al. 2011), Spanner (Corbett et al.
2012)) or other limited transaction types (e.g., Sinfonia’s mini-transactions (Aguilera et al. 2007),
Granola’s independent transactions (Cowling and Liskov 2012), Lynx’s transaction chains (Zhang
et al. 2013), and MDCC’s commutative transactions (Kraska et al. 2013)), or weaker consistency
guarantees (Lloyd et al. 2011; Sovran et al. 2011). In comparison, TAPIR is the first transaction
protocol to provide better performance (both throughput and latency) for general-purpose, read-
write transactions using replication.

A design goal for TAPIR was to support fully general, interactive transactions. Other optimiza-
tions are possible for specific transactionmodels. Subsequent to the initial publication of this work,
other systems have applied TAPIR’s idea of integrating concurrency control and replication layers

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

Building Consistent Transactions with Inconsistent Replication 12:35

to more restricted transaction models. As mentioned above, Eris (Li et al. 2017) uses a network-
level sequencer and optimizes for independent transactions; it also supports fully general transac-
tions through an additional protocol. Janus (Mu et al. 2016) considers a one-shot transaction model
where write sets are known at transaction start; this allows it to employ transaction reordering
(Mu et al. 2014) to increase the commit rate under highly contented workloads.

9 CONCLUSION

This article demonstrates that it is possible to build distributed transactions with better perfor-
mance and strong consistency semantics by building on a replication protocol with no consis-
tency. We present inconsistent replication, a new replication protocol that provides fault tolerance
without consistency, and TAPIR, a new distributed transaction protocol that provides lineariz-
able transactions using IR. We combined IR and TAPIR in tapir-kv, a distributed transactional
key-value storage system. Our experiments demonstrate that TAPIR-KV lowers commit latency
by 50% and increases throughput by 3× relative to conventional transactional storage systems.
In many cases, it matches the performance of weakly consistent systems while providing much
stronger guarantees.

ACKNOWLEDGMENTS

We thank the anonymous reviewers from both SOSP and TOCS and our SOSP shepherd Miguel
Castro for their helpful feedback. We thank Michael Whittaker for implementing the IR recov-
ery protocol, and Jialin Li, Neha Narula, and Xi Wang for early feedback on the article. We also
appreciate the support of our local zoo tapirs, Ulan and Bintang.

REFERENCES

Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari. 1995. Efficient optimistic concurrency control using

loosely synchronized clocks. In Proceedings of the ACM International Conference on Management of Data (SIGMOD’95).

Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos Karamanolis. 2007. Sinfonia: A new para-

digm for building scalable distributed systems. In Proceedings of the ACM Symposium on Operating Systems Principles

(SOSP’07).

Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2014. Highly available trans-

actions: Virtues and limitations. In Proceedings of the Conference on Very Large Databases (VLDB’14).

Jason Baker, Chris Bond, James Corbett, J. J. Furman, Andrey Khorlin, James Larson, Jean-Michel Léon, Yawei Li, Alexander

Lloyd, and Vadim Yushprakh. 2011. Megastore: Providing scalable, highly available storage for interactive services. In

Proceedings of the Conference on Innovative Data Systems Research (CIDR’11).

Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran, Michael Wei, John D. Davis, Sriram

Rao, Tao Zou, and Aviad Zuck. 2013. Tango: Distributed data structures over a shared log. In Proceedings of the ACM

Symposium on Operating Systems Principles (SOSP’13).

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. 1995. A critique of ANSI SQL

isolation levels. In Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data. ACM.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency Control and Recovery in Database Systems.

Addison Wesley.

Ken Birman and Thomas A. Joseph. 1987. Exploiting virtual synchrony in distributed systems. In Proceedings of the ACM

Symposium on Operating Systems Principles (SOSP’87).

Mike Burrows. 2006. The Chubby lock service for loosely coupled distributed systems. In Proceedings of the USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI’06).

Fay Chang, JeffreyDean, SanjayGhemawat,WilsonC. Hsieh, DeborahA.Wallach,Mike Burrows, Tushar Chandra, Andrew

Fikes, and Robert E. Gruber. 2008. Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst.

26, 2, Article 4 (June 2008), 26.

Yanzhe Chen, Xinda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen. 2016. Fast and general distributed transactions using

RDMA and HTM. In Proceedings of the 11th ACM SIGOPS EuroSys (EuroSys’16). ACM.

Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris, and Eddie Kohler. 2013. The scalable commu-

tativity rule: Designing scalable software for multicore processors. In Proceedings of the ACM Symposium on Operating

Systems Principles (SOSP’13).

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

12:36 I. Zhang et al.

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick

Puz, Daniel Weaver, and Ramana Yerneni. 2008. PNUTS: Yahoo!’s hosted data serving platform. Proceedings of the

Conference on Very Large Databases (VLDB’08).

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking cloud serving

systems with YCSB. In Proceedings of the ACM Symposium on Cloud Computing (SOCC’10).

James C. Corbett et al. 2012. Spanner: Google’s globally distributed database. In Proceedings of the USENIX Symposium on

Operating Systems Design and Implementation (OSDI’12).

James Cowling and Barbara Liskov. 2012. Granola: Low-overhead distributed transaction coordination. In Proceedings of

the USENIX Annual Technical Conference (ATC’12).

James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira. 2006. HQ replication: A hybrid quo-

rum protocol for Byzantine fault tolerance. In Proceedings of the USENIX Symposium on Operating Systems Design and

Implementation (OSDI’06).

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-

value store. In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP’07).

Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe Rohm. 2014. YCSB+T: Benchmarking web-scale transactional

databases. In Proceedings of the International Conference on Data Engineering Workshops (ICDEW’14).

Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Castro. 2014. FaRM: Fast remote memory. In

Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI’14). USENIX.

Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew Renzelmann, Alex Shamis, Anirudh

Badam, and Miguel Castro. 2015. No compromises: Distributed transactions with consistency, availability, and per-

formance. In Proceedings of the 25th ACM Symposium on Operating Systems Principles (SOSP’15). ACM.

Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. 2013. Clock-SI: Snapshot isolation for partitioned data stores using

loosely synchronized clocks. In Proceedings of the 32nd IEEE Symposium on Reliable Distributed Systems (SRDS’13). IEEE.

Robert Escriva, Bernard Wong, and Emin Gun Sirer. 2013. Warp: Multi-Key Transactions for Key-Value Stores. Technical

Report. Cornell.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Patterson. 1985. Impossibility of distributed consensus with one faulty

process. J. ACM 32, 2 (Apr. 1985), 374–382.

David K. Gifford. 1979. Weighted voting for replicated data. In Proceedings of the USENIX Symposium on Operating Systems

Design and Implementation (OSDI’79).

Jim Gray and Leslie Lamport. 2006. Consensus on transaction commit. ACM Trans. Database Syst. 31, 1 (Mar. 2006), 133–160.

Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. 2010. ZooKeeper: Wait-free coordination for

internet-scale systems. In Proceedings of the USENIX Annual Technical Conference (ATC’10).

Flavio Junqueira, Yanhua Mao, and Keith Marzullo. 2007. Classic Paxos vs Fast Paxos: Caveat emptor. In Proceedings of the

3rd Workshop on Hot Topics in System Dependability (HotDep’07). USENIX.

David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel Lewin. 1997. Consistent hashing

and random trees: Distributed caching protocols for relieving hot spots on the world wide web. In Proceedings of the

ACM Symposium on Theory of Computing (STOC’97).

Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete. 2013. MDCC: Multi-data center consistency.

In Proceedings of the ACM SIGOPS EuroSys (EuroSys’13).

Hsiang-Tsung Kung and John T. Robinson. 1981. On optimistic methods for concurrency control. ACM Trans. Database

Syst. 6, 2 (June 1981), 213–226.

Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. 1992. Providing high availability using lazy replication.

ACM Trans. Comput. Syst. 10, 4 (Nov. 1992), 360–391.

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A decentralized structured storage system. ACM SIGOPS Operat.

Syst. Rev. 44, 2 (Apr. 2010), 35–40.

Leslie Lamport. 1994. ACM Trans. Prog. Lang. Syst. 16, 3 (May 1994), 872–923.

Leslie Lamport. 2001. Paxos made simple. ACM SIGACT News 32, 4 (Dec. 2001), 51–58.

Leslie Lamport. 2005. Generalized Consensus and Paxos. Technical Report 2005-33. Microsoft Research.

Leslie Lamport. 2006a. Fast Paxos. Distrib. Comput. 19, 2 (2006).

Leslie Lamport. 2006b. Lower bounds for asynchronous consensus. Distrib. Comput. 19, 2 (Oct. 2006), 104–125.

Costin Leau. 2013. Spring Data Redis–Retwis-J. Retrieved from http://docs.spring.io/spring-data/data-keyvalue/examples/

retwisj/current/.

Jialin Li, Ellis Michael, and Dan R. K. Ports. 2017. Eris: Coordination-free consistent transactions using network multi-

sequencing. In Proceedings of the 26th ACM Symposium on Operating Systems Principles (SOSP’17). ACM.

Jialin Li, Ellis Michael, Adriana Szekeres, Naveen Kr. Sharma, and Dan R. K. Ports. 2016. Just say no to Paxos overhead:

Replacing consensus with network ordering. In Proceedings of the 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI’16). USENIX.

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/

Building Consistent Transactions with Inconsistent Replication 12:37

Barbara Liskov, Miguel Castro, Liuba Shrira, and Atul Adya. 1999. Providing persistent objects in distributed systems. In

Proceedings of the European Conference on Object-Oriented Programming (ECOOP’99).

Barbara Liskov and James Cowling. 2012. Viewstamped replication revisited. Technical report MIT-CSAIL-TR-2012-021.

MIT.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011. Don’t settle for eventual: Scalable

causal consistency for wide-area storage with COPS. In Proceedings of the ACM Symposium on Operating Systems Prin-

ciples (SOSP’11).

Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and Amr El Abbadi. 2013. Low-latency multi-

datacenter databases using replicated commit. Proceedings of the Conference on Very Large Databases (VLDB’13).

Dahlia Malkhi and Michael Reiter. 1998. Byzantine quorum systems. Distrib. Comput. 11 (1998), 203–213.

MongoDB. 2013. MongoDB: A open-source document database. Retrieved from http://www.mongodb.org/.

Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is more consensus in Egalitarian parliaments. In

Proceedings of the ACM Symposium on Operating Systems Principles (SOSP’13).

Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014. Extracting more concurrency from distributed trans-

actions. In Proceedings of the USENIX Symposium on Operating Systems Design and Implementation (OSDI’14).

Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. 2016. Consolidating concurrency control and consensus for com-

mits under conflicts. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI’16). USENIX.

Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped replication: A new primary copy method to support highly avail-

able distributed systems. In Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing

(PODC’88).

Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishnamurthy. 2015. Designing distributed systems

using approximate synchrony in data center networks. In Proceedings of the USENIX Symposium on Networked Systems

Design and Implementation (NSDI’15).

Redis. 2013. Redis: Open Source Data Structure Server. Retrieved from http://redis.io/.

Yasushi Saito and Marc Shapiro. 2005. Optimistic replication. Comput. Surveys 37, 1 (Mar. 2005), 42–81.

Salvatore Sanfilippo. 2013. WAIT: Synchronous replication for Redis. Retrieved from http://antirez.com/news/66.

Yee Jiun Song and Robbert van Renesse. 2008. Bosco: One-step Byzantine asynchronous consensus. In Proceedings of the

International Symposium on Distributed Computing (DISC’08).

Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transactional storage for geo-replicated systems. In

Proceedings of the ACM Symposium on Operating Systems Principles (SOSP’11).

Douglas B. Terry,MarvinM. Theimer, Karin Petersen, Alan J. Demers,Mike J. Spreitzer, and Carl H. Hauser. 1995.Managing

update conflicts in Bayou, a weakly connected replicated storage system. In Proceedings of the ACM Symposium on

Operating Systems Principles (SOSP’95).

Robert H. Thomas. 1979. A majority consensus approach to concurrency control for multiple copy databases. ACM Trans.

Database Syst. 4, 2 (June 1979), 180–209.

Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast in-memory transaction processing using

RDMA and HTM. In Proceedings of the 25th ACM Symposium on Operating Systems Principles (SOSP’15). ACM.

Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan R. K. Ports. 2015a. Building consis-

tent transactions with inconsistent replication. In Proceedings of the ACM Symposium on Operating Systems Principles

(SOSP’15).

Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan R. K. Ports. 2015b. Building Consistent

Transactions with Inconsistent Replication (extended version). Technical Report 2014-12-01 v2. University of Washington.

Retrieved from http://syslab.cs.washington.edu/papers/tapir-tr-v2.pdf.

Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K. Aguilera, and Jinyang Li. 2013. Transaction chains:

Achieving serializability with low latency in geo-distributed storage systems. In Proceedings of the ACM Symposium on

Operating Systems Principles (SOSP’13).

Received October 2016; revised July 2018; accepted August 2018

ACM Transactions on Computer Systems, Vol. 35, No. 4, Article 12. Publication date: December 2018.

http://www.mongodb.org/
http://redis.io/
http://antirez.com/news/66
http://syslab.cs.washington.edu/papers/tapir-tr-v2.pdf

