
©Copyright 2017

Irene Y. Zhang

Towards a Flexible, High-Performance
Operating System for Mobile/Cloud Applications

Irene Y. Zhang

A dissertation
submitted in partial ful�llment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2017

Reading Committee:

Henry M. Levy, Chair

Arvind Krishnamurthy

Luis Ceze

Program Authorized to O�er Degree:
Computer Science & Engineering

University of Washington

Abstract

Towards a Flexible, High-Performance
Operating System for Mobile/Cloud Applications

Irene Y. Zhang

Chair of the Supervisory Committee:
Director Henry M. Levy

Computer Science & Engineering

¿e convergence of ubiquitousmobile devices, large-scale cloud platforms and pervasive network con-

nectivity have changed the face of modern user applications. Unlike a traditional desktop application,

which runs on a single machine and supports a single user, the typical user-facing application today

spans numerous mobile devices and cloud servers while supporting large numbers of users. ¿is

shi signi�cantly increased the di�culty of building new user applications. Programmers must now

confront challenges introduced by distributed deployment (e.g., partial failures), new mobile/cloud

application features (e.g., reactivity), and new mobile/cloud requirements (e.g., scalability).

¿is thesis proposes a new type of mobile/cloud operating system designed to meet the evolving

needs of modern applications. Mobile/cloud applications are the standard applications of the future;

thus, they deserve a �rst-class operating system that simpli�es their development and run-time

management. Our key contribution is the design, implementation and evaluation of three systems

that together form the basis for a new mobile/cloud operating system: (1) Sapphire, a new distributed

run-time and process management system, (2) Diamond, a new distributed memory management

system, and (3) TAPIR, a new distributed storage system. Each system introduces new operating

systems abstractions and mechanisms designed to eliminate the challenges and simplify the develop-

ment of mobile/cloud applications. We demonstrate that, like operating systems of the past, these

systems make it easier for programmers to build bigger and more complex applications.

Table of Contents

Page

List of Figures . v

Glossary . ix

Chapter 1: Overview . 1
1.1 ¿e Mobile/Cloud Revolution . 2
1.2 ¿e Case for a Mobile/Cloud Operating System . 3
1.3 Mobile/Cloud Challenges and Application Requirements 6

1.3.1 Mobile/Cloud OS Requirements . 6
1.3.2 ¿e Challenge of Designing a Mobile/Cloud OS 8

1.4 Existing Mobile/Cloud Systems . 9
1.4.1 Distributed Storage Systems . 11
1.4.2 Service-Oriented Architectures . 13
1.4.3 Distributed Run-time Systems . 14
1.4.4 Backend-as-a-Service . 16

1.5 Contributions . 18
1.5.1 Run-time Management: Sapphire . 18
1.5.2 Memory Management: Diamond . 20
1.5.3 Storage Management: TAPIR . 21
1.5.4 Summary . 22

Chapter 2: Sapphire . 24
2.1 Background . 26

i

2.2 Architecture . 27
2.2.1 Design Goals . 27
2.2.2 System Architecture . 28

2.3 Programming Model . 29
2.4 Deployment Kernel . 33
2.5 Deployment Managers . 34

2.5.1 DM Library . 35
2.5.2 DM Structure and API . 36
2.5.3 DM Code Example . 39
2.5.4 DM Design Examples . 42

2.6 Implementation . 45
2.7 Experience & Evaluation . 47

2.7.1 Applications . 47
2.7.2 Experimental Setup . 52
2.7.3 Microbenchmarks . 52
2.7.4 Deployment Manager Performance . 54

2.8 Related Work . 57
2.9 Summary . 58

Chapter 3: Diamond . 60
3.1 Background . 62

3.1.1 Roll-your-own Data Management . 62
3.1.2 Wide-area Storage Systems . 64
3.1.3 Reactive Programming Frameworks . 65

3.2 Architecture & Programming Model . 65
3.2.1 System Model . 65
3.2.2 Data Model . 66
3.2.3 System Calls . 68
3.2.4 Reactive Data Management Guarantees . 70
3.2.5 A Simple Code Example . 71
3.2.6 O�ine Support . 73
3.2.7 Security . 74

3.3 System Design . 74

ii

3.3.1 Data Management Architecture . 75
3.3.2 rmap and Language Bindings . 75
3.3.3 Transaction Coordination Overview . 75

3.4 Wide-area Optimizations . 79
3.4.1 Data-type Optimistic Concurrency Control 79
3.4.2 Client Caching with Bounded Validity Intervals 80
3.4.3 Data Push Noti�cations . 82

3.5 Experience & Evaluation . 82
3.5.1 Prototype Implementation . 82
3.5.2 Programming Experience . 83
3.5.3 Performance Evaluation . 86

3.6 Related Work . 91
3.7 Summary . 93

Chapter 4: TAPIR . 95
4.1 Background . 97
4.2 Inconsistent Replication . 99

4.2.1 IR Overview . 99
4.2.2 IR Protocol . 103
4.2.3 Correctness . 111

4.3 Building Atop IR . 114
4.3.1 IRApplication Protocol Requirement: Invariant checks must be performed

pairwise. 114
4.3.2 IR Application Protocol Requirement: Application protocols must be able

to change consensus operation results. 115
4.3.3 IRPerformancePrinciple:Application protocols should not expect operations

to execute in the same order. 116
4.3.4 IR Performance Principle: Application protocols should use cheaper incon-

sistent operations whenever possible rather than consensus operations. . . . 116
4.4 TAPIR . 117

4.4.1 Overview . 117
4.4.2 Protocol . 119
4.4.3 Correctness . 130

4.5 TAPIR Extensions . 135

iii

4.5.1 Read-only Transactions . 135
4.5.2 Serializability . 137
4.5.3 Synchronous Log Writes . 137
4.5.4 Retry Timestamp Selection . 138
4.5.5 Tolerating Very High Skew . 138

4.6 Evaluation . 138
4.6.1 Experimental Setup . 139
4.6.2 Single Datacenter Experiments . 141
4.6.3 Wide-Area Latency . 142
4.6.4 Abort and Retry Rates . 144
4.6.5 Comparison with Weakly Consistent Systems 145

4.7 Related Work . 145
4.7.1 Replication . 146
4.7.2 Distributed Transactions . 147

4.8 Summary . 148

Chapter 5: Conclusion . 149
5.1 Looking Forward: ¿e Path to Adoption . 150
5.2 Concluding Remarks . 151

Bibliography . 152

Appendix A: Open-source Code . 169

Appendix B: TLA+ Speci�cation . 170
B.1 Inconsistent Replication Speci�cation . 170
B.2 TAPIR Speci�cation . 194

iv

List of Figures

Figure Number Page

1.1 ¿e evolution of application environments and system architectures. 4
1.2 Evaluation of existing systems.We graph each class of systems based on how many

mobile/cloud requirements it meets. If the system gives applications control over the
requirement or requires applications help meet the requirement, then we draw the
requirements as a range between the number of requirements that the application can
choose tomeet. Note that themore general-purpose systemsmeet fewer requirements,
while the less general ones meet more. ¿is trade-o� leaves programmers with a
di�cult choice since no systems are both general-purpose and meet all of their
requirements. 11

1.3 A simple client-server architecture. Both client and server code are typically stateless
and idempotent to facilitate retries and recovery on failures. 12

1.4 A service-oriented architecture. Unlike most services, noti�cation services [4, 15]
directly connect to mobile clients rather than interfacing through the application
front-end. Note the large amount of coordination across services, which the applica-
tion is le to manage. 14

1.5 A cloud run-time architecture. Systems like Google App Engine [79] and Amazon
Lambda [11] manage execution of the application’s server-side computation, auto-
matically scaling and restarting code as necessary. ¿ey require stateless application
code but provide access to a distributed storage system and other services. 15

1.6 Backend-as-a-Service architecture. All cloud-side storage and computation is encap-
sulated by the back-end system, which presents either a general data store or a more
app-speci�c API. 17

1.7 ¿e new mobile/cloud operating system.¿emobile/cloud OS spans mobile devices
and cloud servers to provide end-to-end runtime, memory and storage management
across the entire mobile/cloud application. 18

v

1.8 Mobile/cloud application running on Sapphire, Diamond and TAPIR. Note that all
coordination has moved into the OS components, eliminating di�cult distributed
systems problems from the mobile/cloud application. 22

2.1 Sapphire run-time architecture. A Sapphire application consists of a distributed col-
lection of Sapphire Objects executing on a distributed Deployment Kernel (DK).
A DK instance runs on every device or cloud node. ¿e Deployment Management
(DM) layer handles distribution management/deployment tasks, such as replication,
scalability, and performance. 28

2.2 Example Sapphire object code from BlueBird. 31
2.3 Deployment Manager (DM) organization.¿e components named Proxy, Instance

Mgr, and Coordinator are all part of the DM for one Sapphire Object instance (shown
here with two replicas). DK-FT is a set of fault-tolerant DK nodes, which also host
the OTS, that support reliable centralized tasks for DMs and the DK. 37

2.4 Example Deployment Manager with arguments. 41
2.5 Sapphire application and run-time system implementation. 46
2.6 Sapphire throughput measurement.¿roughput of a Sapphire Object versus an RMI

Object. 51
2.7 Code o�oading evaluation. 55
2.8 DM evaluation.¿roughput using the LoadBalancedFrontEnd DM. 56
2.9 Multi-player Game with di�erent DMs. Performance is measured in latency to make

each application-level call. 57

3.1 Example 100 game architecture. Each box is a separate address space. players, turn
and sum are shared across address spaces and the storage system; myturn? and curplay
are derived from shared data. When shared values change, the app manually updates
distributed storage, other processes with the shared data, and any data in those
processes derived from shared data, as shown by the numbered steps needed to
propagate Alice’s move to Bob. 63

3.2 Diamond 100 game data model.¿e app rmaps players, turn and sum, updates them
in read-write transactions and computes myturn? and curplay in a reactive transaction. 66

3.3 Diamond code example. Implementation of the 100 game using Diamond. Omitting
includes, set up, and error handling, this code implements a working, C++ version of
the 100 game [1]. DStringSet, DLong and DCounter are reactive data types provided
by the Diamond C++ library. 72

3.4 Diamond architecture. Distributed processes share a single instance of the Diamond
storage system. 74

vi

3.5 Diamond transaction coordination. Le : Alice executes a read-write transaction that
reads A and writes B. Right: Bob registers a reactive transaction that reads B (we omit
the txn_id). When Alice commits her transaction, the back-end server publishes
the update to the front-end, which pushes the noti�cation and the update to Bob’s
LibDiamond, which can then re-execute the reactive transaction locally. 76

3.6 Diamond versioned cache. Every Diamond client has a cache of the versions of records
stored by the Diamond cloud storage system. ¿e bottom half shows versions for
three keys (A, B and C), and the top half shows cached versions of those same keys.
Note that the cache is missing some versions, and all of the validity intervals in the
cache are bounded. 81

3.7 Peak throughput for explicit data management vs Diamond.We compare an imple-
mentation using Redis and Jetty to Diamond at di�erent isolation levels with and
without Docc. We label the ordering guarantees provided by each con�guration. In
all cases, the back-end servers were the bottleneck. 87

3.8 ¿roughput improvement with Docc for each Retwis transaction type. 89
3.9 Latency comparison for 100 game rounds with data push noti�cations. Each round con-

sist of 1 move by each of 2 players; latency is measured from 1 client. We implemented
explicit data management and noti�cations using Redis and Diamond noti�cations
with and without batched updates. 89

3.10 Latency of 100 game rounds during failure.We measured the latency for both players
to make a move and killed the leader of the storage partition a er about 15 seconds.
A er recovery, the leader moves to another geographic region, increasing overall
messaging latency on each move. 90

3.11 End-user operation latency for PyScrabble and Chat Room on Diamond and non-
Diamond implementations. 92

4.1 Today’s common architecture for distributed transactional storage systems.¿e dis-
tributed transaction protocol consists of an atomic commitment protocol, commonly
Two-Phase Commit (2PC), and a concurrency control (CC) mechanism. ¿is runs
atop a replication (R) protocol, like Paxos. 97

4.2 Example read-write transaction using two-phase commit, viewstamped replication
and strict two-phase locking. Availability zones represent either a cluster, datacenter
or geographic region. Each shard holds a partition of the data stored in the system
and has replicas in each zone for fault tolerance. ¿e red, dashed lines represent
redundant coordination in the replication layer. 98

4.3 Summary of IR interfaces and client/replica state. 101
4.4 IR Call Flow. 102

vii

4.5 Merge function for the master record.We merge all records from replicas in the latest
view, which is always a strict super set of the records from replicas in lower views. . 109

4.6 Example read-write transaction in TAPIR. TAPIR executes the same transaction
pictured in Figure 4.2 with less redundant coordination. Reads go to the closest
replica and Prepare takes a single round-trip to all replicas in all shards. 118

4.7 Summary of TAPIR interfaces and client and replica state. 120
4.8 TAPIR’s consensus operation handler. Since Prepare is TAPIR’s only consensus oper-

ations, tapir-exec-consensus just runs TAPIR’s prepare algorithm at replicas. . . 121
4.9 OCCvalidation function executed on Prepare. prepared-reads andprepared-writes

get the proposed timestamps for all transactions that the replica has prepared and
read or write to key, respectively. 123

4.10 TAPIR’s decide function. IR runs this if replicas return di�erent results on Prepare. 124
4.11 TAPIR’s merge function. IR runs this function at the leader on synchronization and

recovery. 125
4.12 TAPIR’s function for synchronizing inconsistent replica state. IR runs this on each

replica except the leader during synchronization. r is the replica’s local record. . . . 126
4.13 TAPIR’s decide function for Prepare on coordinator recovery. IR runs this if replicas

return di�erent results on Prepare. ¿is function di�ers from the normal case ex-
ecution decide because it is not safe to return abort unless it is sure the original
coordinator did not receive prepare-ok. 129

4.14 TAPIR’s merge function. IR runs this function at the leader on synchronization and
recovery. ¿is version handles no-vote results. 131

4.15 TAPIR’s function for synchronizing inconsistent replica state.¿is version handles
no-vote results. 132

4.16 TAPIR-KV datacenter comparison (Zipf coe�cient 0.75).We plot the average Retwis
transaction Latency versus throughput. 142

4.17 TAPIR-KV wide-area evaluation.We plot the average wide-area latency for Retwis
transactions with the leader located in the US and client in US, Europe or Asia. . . 143

4.18 TAPIR-KV abort rates.Weplot abort rates at varying Zipf co-e�cients with a constant
load of 5,000 transactions/second in a single datacenter. 144

4.19 TAPIR-KV comparison with weakly consistent storage systems. 146

viii

Glossary

FAULT-TOLERANCE: ¿e ability to handle failures without losing data.

AVAILABILITY: ¿e ability to operate normally when machines or network links are down. Also,
frequently de�ned as the percentage of total operation time that a system is able to operate
normally regardless of hardware downtime.

PERSISTENCE: ¿e ability to never lose or corrupt data in the face of system failures or reboots.

REPLICATION: To use copies of data items, typically for fault-tolerance or availability.

CACHING: Placing copies of data objects in lower latency storage for better performance.

CODE OFFLOADING: To execute application code on a di�erent machine with more processing
power for better performance.

SYSTEMMODEL: ¿e placement and use of computers in the system.

CONCURRENCY: ¿e ability to shared data items from more than one thread of execution.

COHERENCE MODEL: ¿e rules de�ning when a replicated system’s behavior can diverge from
that of an ideal, unreplicated system for accesses to a single data item.

CONSISTENCYMODEL: ¿e rules de�ning when a replicated system’s behavior can diverge from
that of an ideal, unreplicated system for accesses to all of the system’s data items.

ISOLATIONMODEL: ¿e rules de�ning when the behavior of a database executing multiple trans-
actions concurrently can diverge from the behavior of an ideal database that executes all
transactions serially.

ix

REACTIVITY: ¿e ability to automatically propagate changes across the system on any change to
the system inputs.

x

Acknowledgments

¿is thesis would not have been possible without many, many people in my life. I would like to begin

by thanking my batchmates: Jialin Li, Adriana Szekeres and Naveen Sharma. None of us could have

anticipated this journey when we all started it together, but we all knew we were in it together and

now the end is in sight!

None of this workwouldhave been possiblewithoutmynumerous collaborators: Adriana Szekeres,

Naveen Sharma, Niel Lebeck, Brandon Holt, Ray Cheng, Simon Peter, Pedro Fonseca, James Bornholt,

Doug Woos and Mothy Roscoe. I am honored to have worked with three amazing undergraduates:

Dana Van Aken, Isaac Ackerman and Ariadna Norberg. ¿e other students in our lab that made

my day-to-day life enjoyable and kept me motivated and excited about research: Katelin Bailey, Pete

Hornyack, Jialin Li, Antoine Kaufmann, Ellis Michael, Kaiyaun Zhang, Helgi Sigurbjanarson, Helga

Gudmundsdottir, Qiao Zhang,Danyang Zhuo, Yuchen Jin, Vincent Liu,Haichen Shen and Seungyeop

Han. I can easily say that I value these relationships much more than any other accomplishments

during my PhD.

I would like to thankMel Kadenko formakingmy life easier with her ability to reimburse (almost)

anything and providing distraction when needed. Hal Perkins always provided a friendly face and

candy bar every time I walked to Arvind’s o�ce and didn’t �nd him.¿is thesis would not be the

amazing document that it is without the help of Sandy Kaplan, who has read and touched every word.

I’ll end by thanking the many advisors in my life, beginning with Hank and Arvind. Advising

any student is not easy and I’m sure I was not just any student. I would not have started this journey

xi

without support from my M. Eng. advisors, Frans Kaashoek and Jeremy Stribling. I would not have

�nished this journey without help from the other systems faculty at the University of Washington:

Tom Anderson, Luis Ceze, Magda Balazinska, Ed Lazowska, Xi Wang, Franzi Roesner and Mark

Oskin. Although LindsayMichimoto was not an o�cial academic advisor, I credit her with completely

changing my PhD experience.

Finally, I have to thank my family. My husband, Dan Ports, is, as always, my closest mentor,

collaborator and cheerleader. My parents have always pushed me do what would make me happy

and never valued me based on my accomplishments. My in-laws, Catherine Covey and Tom Ports,

have always taken equal pride in my achievements as their own boys.

In the end, I acknowledge my mom for my pursuit of elegance in both so ware and life.

xii

Dedication

to my husband and best friend, Dan

xiii

1

1 | Overview

Over the last decade, three hardware trends and a “killer app” have converged to revolutionize the

face of everyday applications. First, the low-cost and widespread availability of small but powerful

mobile devices (e.g., smartphones, tablets) o�ers users a portable computing platform with easy access

to countless applications. Next, web companies, like Google [78] and Amazon [12], leveraged cheap

commodity hardware to build cloud computing platforms that are always available and powerful

enough to supportmillions of users. Finally, cellular networks developed data capabilities, andwireless

networks became plentiful and cheap, resulting in almost pervasive network connectivity between

mobile devices and the cloud.

Combined, these technologies gave rise to the killer app of the mobile/cloud revolution: social

networks. Facebook [67], Twitter [208] and similar applications [211, 101, 152, 185] provide a platform

for users to publish and share information. Mobile devices give users access to their apps on the go,

so users can share information about their lives as they experience them. Cloud services make this

information constantly available, and pervasive network connectivity keeps users connected. As a

result, social apps became a way for users to not only share, but to interact, in real time.

Today, social interactivity is not limited to social networks; it has permeated everyday applications.

For example, social games (e.g., Words With Friends [217]), where users play games with friends

in real time, have become a multi-billion dollar industry [63]. Productivity and organizational

applications (e.g.,Trello [203]) are changing howusers collaborate remotely by providing sophisticated

communication channels in real time. GoogleDocs [81] adds social interaction to a traditional desktop

application – a document editor – by leveraging the mobile/cloud environment. It and similar apps

2

(e.g., Microso Word Online [142], Keynote Live [102]) let users interactively edit the same document

at the same time, access their documents from any device at any time, and avoid worrying about lost

data or limited storage capacity.

1.1 ¿e Mobile/Cloud Revolution

Today, mobile, web and desktop applications have blurred together so much that mobile/cloud have

become the norm; so much so that they have a�ected the behavior of an entire generation [204]. As

a result, the average user-facing application has acquired the following new characteristics:

1. A new distributed, heterogenous and wide-area deployment. Unlike past user applications

that run on a single machine, mobile/cloud applications span mobile devices and cloud servers

with vastly di�erent computational and networking capabilities. As a result, they must cope

with performance variability, partial failures and unavailability, and hundred-millisecond

communication delays.

2. New multi-user, interactive and real-time sharing features. Unlike past user applications

that support a single user, mobile/cloud applications support multiple users. ¿ese users in-

teract through the application in complex ways (e.g., playing a word game, collaborating on

a document). As a result, mobile/cloud applications must coordinate synchronized access to

shared data between users in real time.

3. New longevity, reliability and persistence guarantees.Unlike past user applications that store

persistent state in a �le system, mobile/cloud applications do not present a strong separation

between run-time and stored state to users; for example, Facebook users have no concept of

�les or a save button. Users expect the application to run forever, never crash and never lose

their data.

¿ese characteristics add up to more complexity for application programmers, as we explore in

Section 1.3. ¿ey introduce a new set of application requirements (e.g., availability, scalability) that

application programmers have never faced before. Worse, no general-purpose systems currently exist

3

to help application programmers because these characteristics were previously limited to specialized

applications (e.g.,massivemulti-playeronline games) anddistributed systems,which are both typically

built by experts. As a result, today’s mobile/cloud programmers either implement custom solutions

(requiring distributed systems expertise) or cobble together ad hoc solutions using existing systems

that meet a limited set of their requirements.

¿is thesis addresses the wide gap in the systems design space. We �rst make the case for a new

type of operating system (OS) designed to meet the needs of mobile/cloud applications. We examine

application requirements for such an OS and discuss why existing state-of-the-art mobile/cloud

systems fail to meet them. Finally, we describe the design, implementation and evaluation of three

systems that together comprise the basis for a new mobile/cloud OS.

1.2 ¿e Case for a Mobile/Cloud Operating System

Figure 1.1 shows the progression of system architectures from the �rst mainframe environment

(Figure 1.1a) to today’s mobile/cloud environment (Figure 1.1d). Early application programmers

faced a world similar to today’s mobile/cloud developers: they built applications directly on machine

hardware and were responsible for tackling the challenges of their computing platform using ad-hoc

collections of systems and libraries. For example, programmers built custom applications for speci�c

hardware and coordinated computing resources with other applications and libraries. ¿ey also

organized persistent storage to ensure that application state was not lost on failure.

Operating systems were developed to address the growing variety and complexity of hardware and

applications. As shown in Figure 1.1b, the operating system runs between the machine hardware and

user-facing applications and has three important components1: (1) a process manager that handles

the application’s run-time execution, (2) a memory manager that handles in-memory application

state and (3) a �le system that manages persistent storage. Table 1.1 lists each component’s functions

and the abstractions for applications using those functions.

With these three components, operating systems signi�cantly simpli�ed application development

1¿eOS typically also manages I/O to external entities and provides protection and isolation; both are beyond the
scope of this thesis.

4

Mainframe

App

User

(a) ¿e �rst mainframes ran applications directly on

hardware. Each application supported a single user.

Mainframe

App App App

Operating System

User User User

Process
Manager

Memory
Manager

File
System

(b) Operating systems let mainframes run more than

one application at a time. Each application still sup-

ported a single user.

App App App

PC

User

Operating System

Process
Manager

Memory
Manager

File
System

(c) PCs were designed for a single user, but their op-

erating systems let them run multiple applications at

the same time.

App

Cloud
Server

Mobile
Device

OS

User

Cloud
Server

Mobile
Device

OSOSOS

User User User User User

(d) Mobile/cloud applications run across multiple

mobile devices and cloud servers and support many

users.

Figure 1.1:¿e evolution of application environments and system architectures.

on mainframes. As a result, programmers could more quickly and easily build complex applications,

making operating systems increasingly important into the next era.

¿e 1980s and 1990s sawmainframes andminicomputers give way to smaller and cheaper personal

computers (PCs). ¿ese compact machines supported a single user with many applications, as shown

5

Table 1.1: Classic operating system components. For each component, this table lists the set of functions

and the abstractions provided by the component to simplify applications.

OS Component Component Functions OS Abstractions

Process Manager • Deploy and schedule application code • processes, threads

(Run-time) • Abstract low-level hardware • sockets, �le descriptors

• Mediate communication and

coordination between applications
• inter-process communication (IPC)

pipes, signals

Memory Manager • Provide a uniform address space • virtual memory

• Manage allocation and scheduling • malloc, swap-to-disk

• Create and synchronize memory mappings • shared memory,

memory-mapped �les

File System • Abstract low-level disk interface • �les, directories

(Storage Manager) • Mediate concurrent accesses • atomicity, locking

• Handle crashes and recover from failures • fsync, journaling

in Figure 1.1c. While mainframes and minicomputers were largely constrained to labs in work

environments, PCs became ubiquitous devices on o�ce and home desktops, leading to an explosion

in the types and complexity of applications available. While hardware and applications changed

dramatically, the operating systems remained basically the same in terms of their functions and

abstractions. ¿ey gained importance, however, because they let programmers who were not systems

experts build complex, user-facing applications. For the �rst time, anyone owning a computer could

build simple programs.

Figure 1.1d shows the computing environment and system architecture for a mobile/cloud appli-

cation. ¿e most striking di�erence is that the user-facing application is distributed for the �rst time.

6

Each mobile device and cloud server continues to run an OS, but no OS components span the entire

user application.

In lieu of an OS, programmers have developed many new libraries and run-time systems for

mobile/cloud applications, which we review in Section 1.4. However, these existing systems are still

limited: they span only a portion of the mobile/cloud application, cover a subset of OS responsibili-

ties, or work for only a class of applications. Because no existing systems provide general-purpose

abstractions across the entire mobile/cloud application, programmers must create a patchwork of

systems to meet their needs and mediate among them. More o en than not, these systems work

together poorly because there are so many existing systems.

Instead of this makeshi approach, we advocate for the design of a new operating system to meet

the end-to-end requirements of mobile/cloud applications. Such applications have clearly established

themselves as the preeminent class of future user applications, and a dedicated OS is necessary to

simplify their programming.

1.3 Mobile/Cloud Challenges and Application Requirements

¿is thesis introduces three new systems that form the basis of a new mobile/cloud operating system.

Section 1.1 noted the three characteristics that di�erentiatemobile/cloud applications from traditional

applications: their new deployment, new features and new guarantees. In this section, we explore

how those characteristics lead to new programming challenges, which will dictate the requirements

for our new OS.

1.3.1 Mobile/Cloud OS Requirements

¿e threemobile/cloud characteristics lead to a set of new challenges for programmers when building

mobile/cloud applications. Table 1.2maps these characteristics to newprogramming challenges.¿ese

challenges, in turn, dictate the requirements for our mobile/cloud OS because the goal of our new

OS is to help programmers cope with their programming challenges.

¿e �rst two programming challenges and OS requirements are a consequence of distributed, het-

erogenous and wide-area deployment. Partial failures and network partitions occur in any distributed

7

Table 1.2:Mobile/cloud application characteristics, challenges andOS requirements.Eachmobile/cloud

characteristic leads to a set of new application challenges, which dictate the requirements for a

mobile/cloud OS.

Characteristic New Programming Challenge OS Requirement

Deployment
Remain usable with unreachable nodes and network partitions Availability

Respond with low latency despite variable and limited performance Responsiveness

Features
Support many users accessing the app concurrently Scalability

Allow users to access shared data without con�icts Consistency

Guarantees
Ensure data is not lost on crashes and failures Fault-tolerance

Automatically save and propagate updates Reactivity

environment, especially one which spans wide-area networks. At the same time, mobile/cloud users

expect to have continuous access to their applications, so programmers must ensure that their appli-

cations is highly available. Mobile devices have limited computational resources and communication

across the wide-area is expensive. As a result, programmers must deliver a responsive, low-latency

user experience under varying computational and communication latencies.

¿e next two challenges and requirements stem from newmulti-user, interactive sharing features.

Large numbers of users may access amobile/cloud application at the same time from di�erent devices.

¿erefore, the application must be designed to scale to many devices and servers. Interacting users

will naturally access shared data, so they must receive a consistent, con�ict-free view even if many

users are concurrently reading and writing.

¿e �nal two challenges and requirements arise from new longevity, reliability and persistence

guarantees. Users do not expect desktop applications to survive crashes without losing data; however,

users do not understand failures of cloud servers that they cannot see. As a result, users expect

mobile/cloud applications to run forever and never lose their data. Programmers must therefore build

8

applications to be fault-tolerant. Without a boundary between run-time and persistent application

state, users expect applications to automatically propagate their updates throughout the application

and to persistent storage, so programmers must also build their applications to be reactive.

1.3.2 ¿e Challenge of Designing a Mobile/Cloud OS

Classic operating systems meet the requirements of most applications with a single design because

the desktop environment is relatively resource-rich. For example, the page-based virtual memory

mechanism works for all but a few of today’s large memory applications because accessing memory is

a low latency operation and coordinating virtual memory remains cheap. However, the mobile/cloud

environment is considerably more constrained: communication latencies across the wide-area are

high, computational resources are limited on mobile devices and throughput between mobile devices

and cloud servers is low.

Due to these constraints, mobile/cloud applications o en require di�erent solutions to their

application requirements, and the choice between solutions can be application-speci�c. For example,

there several ways to achieve fault-tolerance, like replicating application processes or continuously

synchronizing updates storage. Synchronization is a better solution if an application has very little

run-time state, but replication is better in applications with more run-time state or rapidly changing

run-time state.

Application programmer may also have to choose between meeting one requirement or another.

For example, replicating data to the cloud increases the fault-tolerance and availability of the applica-

tion at the cost of responsiveness. Applications with important data (e.g., banking and �nance apps)

would choose the former, while others (e.g., games) might choose the latter.

¿ese trade-o�s make it challenging to design a general-purpose, mobile/cloud operating sys-

tem. ¿e di�erent solutions add needed functions to one or more management components in our

new OS. For example, replicating processes would be a new run-time management function, while

synchronization between memory and disk is a memory management function.

Table 1.3 presents examples of new management functions that a new mobile/cloud OS could

potentially implement to help programmers build applications that meet each requirement. ¿is

9

Table 1.3: Examples of functions a mobile/cloud OS might provide in each component to help pro-

grammers meet the six mobile/cloud requirements.

Requirement Run-time Manager Memory Manager Storage Manager

Availability Auto-restart on crash Auto-sync w/ storage Replication

Responsiveness Automatic process migration In-memory caching Storage caching

Scalability Automatic process spin-up In-memory caching Partitioning

Consistency Distributed locks Atomic memory operations Transactions

Fault-tolerance Periodic process checkpoint Auto-sync w/ storage Log to disk

Reactivity Noti�cations Sync across address spaces Triggers

table is not meant to be comprehensive; more than one function can help programmers achieve a

requirement even within one management component (e.g., many run-time management strategies

can achieve availability). As a result, a general-purpose operating system must be �exible enough to

support all of these application-speci�c functions. As we will see later, this �exibility constitutes the

most important design goal in every part of our new OS.

1.4 Existing Mobile/Cloud Systems

Few existing systems meet the myriad requirements and needs of today’s mobile/cloud applications.

Nearly all lack �exibility; instead, they implement a single solution to a subset of the mobile/cloud

requirements discussed previously. As a result, existing systems can support only one class of ap-

plications or part of an application. Programmers are must piece together systems to meet some

requirements and implement custom solutions for the rest.

¿is section reviews existing systems and their uses. Table 1.4 summarizes the classes of systems

that we cover, along with the requirements met and any application limitations. Figure 1.2 plots each

10

Table 1.4: Evaluation of existing mobile/cloud application systems. We list the classes of existing

mobile/cloud systems. For each system, we evaluate how many of the mobile/cloud requirements

the system meets and note any limitations on the application.

System Type Requirements Met Limitations

Wide-area

Storage [62, 61]

Availability, Responsiveness Limited app state and computation

Scalability, Fault-tolerance Limited app state and computation

Consistency Requires app-level locking

Reactivity Requires polling

Cloud

Storage[22, 56]

Availability Requires app restart cloud servers

Scalability Requires app scale cloud servers

Responsiveness Limited to server-side code

Consistency Requires app-level locking

Lock Service [35] Consistency Requires app acquire locks

Noti�cation

Service [4, 15]

Consistency Requires app-level coordination

Reactivity Requires app publish and subscribe

Code-o�oading [52, 177] Responsiveness Limited data for computation

Virtual Machines [9, 80] none none

Containers [19, 18]
Availability Takes time to restart

Scalability Requires app spin-up containers

Lambda Functions [11, 82] Availability, Scalability Limited programming stack

App Engines [79, 17] Availability, Scalability, Fault-tolerance Limited programming stack and app state

Backend-as-

a-Service [163, 69]

Availability, Responsiveness Limited app state or limited app class

Scalability, Fault-tolerance Limited app state or limited app class

Consistency Weak or none

Reactivity Requires polling or pub/sub

11

system class based on the number of requirements met and the range of applications supported.

of requirements met
0 6

G
en

er
al

ity

 Cloud Storage

Container Service

Lambda
Functions
App Engines

Backend-As-A-Service

Code-
offloading

Wide-area Storage

Lock
Service
Notification Service

Virtual
Machines

Figure 1.2: Evaluation of existing systems. We graph each class of systems based on how many

mobile/cloud requirements it meets. If the system gives applications control over the requirement or

requires applications help meet the requirement, then we draw the requirements as a range between

the number of requirements that the application can choose to meet. Note that the more general-

purpose systems meet fewer requirements, while the less general ones meet more. ¿is trade-o�

leaves programmers with a di�cult choice since no systems are both general-purpose and meet all of

their requirements.

1.4.1 Distributed Storage Systems

Distributed storage systems have become crucial components for mobile/cloud applications because

they meet many mobile/cloud requirements. For example, a wide-area storage system like Drop-

12

box [62] or Google Drive [61] eliminates or simpli�es all mobile/cloud requirements; however, the

programmer must implement the application as a completely stateless mobile client. Such an ap-

plication would meet the six mobile/cloud requirements because it would: (1) be available when it

can read and write to the storage system, (2) be responsive when it has low latency access to storage,

(3) rely on the storage system to scale to a large number of clients, (4) use a simple technique for

consistency and concurrency control (e.g, a lock �le to avoid con�ict), (5) continuously checkpoint

to storage for fault-tolerance, and (6) rely on periodic polling to reactively propagate updates. In this

way, as shown in Figure 1.2, a wide area storage system completely meets three requirements and

simpli�es the others.

¿e disadvantage of this application design is poor performance given either large amounts of

application state to read and write on each request or an application that needs more computation

than the mobile client can support. As a result, we mark wide-area storage systems as less general in

Figure 1.2. Nevertheless, these systems provide a popular solution for many types of applications,

like recipe managers [158, 24, 151], note taking [66, 184] and journaling apps [59, 54, 87], and to-do

lists [200, 2, 218].

Cloud
Storage
System

Frontend
App

Servers

Mobile
App

Clients

Figure 1.3: A simple client-server architecture. Both client and server code are typically stateless and

idempotent to facilitate retries and recovery on failures.

Of course, not all mobile/cloud applications can be implemented with stateless mobile clients; for

example, applicationsmay have heavy computational or security needs that require some components

13

to run on the cloud. Figure 1.3 shows a simple architecture for a mobile/cloud application using

a cloud-based distributed storage system (e.g., Dynamo [56], BigTable [40], Spanner [48]). ¿e

application consists of a client-side component, which runs on mobile devices, and a server-side

component, which runs on cloud servers. Many of today’s popular mobile/cloud applications use

this architecture at their core, including Facebook [67], Twitter [207] and Amazon [12].

While cloud storage systems simplify the task of meeting mobile/cloud requirements for range

of applications (marked as general purpose in Figure 1.2), they leave signi�cant work for application

programmers. Because both client and server components are typically stateless, the application must

still re-start servers (for availability), cache locally on mobile clients (for responsiveness), spin up

more servers (for scalability), coordinate between clients and servers (for consistency), checkpoint

both clients and servers (for fault-tolerance), and poll servers (for reactivity). Simply stated, building

a mobile/cloud application using a cloud storage system is the modern-day equivalent of building a

desktop application with only a �le system.

1.4.2 Service-Oriented Architectures

Since traditional distributed storage systems leave signi�cant responsibilities unmanaged, appli-

cation programmers and systems researchers have developed new types of distributed systems to

more completely meet the needs of mobile/cloud applications. Examples include lock services (e.g.,

Chubby [35], ZooKeeper [98]), distributed graphs (TAO [33], FlockDB [165]), queue services (Star-

ling [192], Kafka [114]) and noti�cation/pub-sub services (e.g., ¿ial� [4]). As Figure 1.4 shows,

applications use these services to help implement speci�c functionality (e.g., concurrency control

and push noti�cations). As a result, the services typically help with only one mobile/cloud require-

ment and do not eliminate all work needed to achieve that requirement. For example, lock services

(Figure 1.2) help applications provide consistency by avoiding con�icts, but programmers must still

call the lock service at appropriate times to achieve consistency. Likewise, noti�cation services help

applications e�ciently achieve reactivity by eliminating the need for polling; however, programmers

must still send and subscribe to noti�cations correctly to propagate updates to other users.

Applications using these systems with narrow functionality are said to have a service-oriented

14

Storage
System

Lock Service

 Notification Service

Frontend
App

Servers

Mobile
App

Clients

Figure 1.4: A service-oriented architecture. Unlike most services, noti�cation services [4, 15] directly

connect to mobile clients rather than interfacing through the application front-end. Note the large

amount of coordination across services, which the application is le to manage.

architecture. Twitter and Amazon are popular examples [94, 95]. For example, Twitter implements

separate services for storing tweets (T-store [93]), distributing tweets (Firehose [94]), issuing unique

IDs (Snow�ake [110]), and maintaining its social graph (Flock [165]). ¿e bene�ts of a service-

oriented architecture are its strong boundaries between application components and ability to make

those service available to the public, which both Amazon and Twitter leverage. However, each

application service/component must re-implement solutions to all mobile/cloud requirements, and

it is o en di�cult for programmers to reason about cross-service coordination. Even with a correct

implementation, achieving many mobile/cloud requirements may prove di�cult; for example, it

requires a complex and expensive two-phase commit protocol to achieve the correct fault-tolerant

behavior.

1.4.3 Distributed Run-time Systems

While distributed storage systems and service-oriented architectures o�er useful tools and function-

ality, programmers must still run and manage the execution of application components. For example,

they must detect failures and re-start servers (for availability) and monitor load and spin up more

servers (for scalability). Distributed run-time systems help programmers meet these challenges.

15

We divide existing run-time systems into mobile and cloud solutions. Most mobile run-time

systems are code-o�oading systems [85, 52, 42], which automatically move computationally intensive

mobile code execution to more powerful platforms for better performance or battery usage. ¿ese

systems remain in the research realm because the growing computational capabilities of mobile

devices are eroding the bene�ts of moving computation to the cloud.

Storage
System

Lock Service

 Notification Service

Cloud
Run-time
System

Mobile
App

Clients

Figure 1.5: A cloud run-time architecture. Systems like Google App Engine [79] and Amazon

Lambda [11] manage execution of the application’s server-side computation, automatically scal-

ing and restarting code as necessary. ¿ey require stateless application code but provide access to a

distributed storage system and other services.

Figure 1.5 shows how cloud run-time systems enable application programmers to easily execute

application logic run in the cloud. ¿ese systems vary based on �exibility in the programming stack

(e.g., OS, run-time libraries, programming language, etc.) and the amount of run-time management

they provide. For example, EC2 [9] and services like it (e.g., Google Compute Engine [80], Azure

VM) run virtual machines that let programmers control the entire programming stack. However,

they o�er little to no run-time management, leaving programmers to detect failures and restart VMs

(for availability) and monitor load and spin up more VMs (for scalability).

Amazon’s EC2 container service [19], Google’s Container Engine [80] and Azure Containers [18]

support lightweight containers that let programmers customize the full programming stack with less

overhead. Google’s public container management service, Kubernetes [34], provides basic run-time

16

management; it detects and restarts crashed containers and provides loadmonitoring, but it leaves the

application to spin upmore containers. It provides no fault-tolerance andmeets no othermobile/cloud

requirements. Overall, Kubernetes o�ers a bare-bones run-time management solution because

allocating and starting a container is a high-overhead operation.

Amazon Lambda [11] – along with Google and Azure Functions [82, 20] – o�er stateless hooks

that programmers can register and run. However, they restrict the programming language and o�er

little to no control over run-time libraries and the OS. ¿ese services dynamically scale based on

function invocations (for scalability) and restart functions if they do not complete (for availability),

but they provide no support for the other four requirements.

Google App Engine [76], Azure App Service [17], and Amazon’s Elastic Beanstalk [10] combine

function services with persistent storage for stateful server-side application code. While application

programmers must still checkpoint to storage, these systems will detect failures and automatically

recover (for availability and fault-tolerance) and scale to meet load. ¿ey provide a complete suite

of run-time management services for application logic run in the cloud provided that applications

do not have special needs that require a more customized deployment, for example, geo-distributed

placement for performance or other reasons. Nevertheless, these systems power many popular apps,

including Snapchat [185] and Spotify [189].

1.4.4 Backend-as-a-Service

Systems that provide backend-as-a-service (BaaS) have become a new trend in mobile/cloud develop-

ment. As shown in Figure 1.6, BaaS systems encapsulate all cloud-side computation and storage into a

general API. Some BaaS systems are general purpose, like Firebase [69], Parse [159] and Meteor [141];

they resemble a wide-area storage system, with stateless clients accessing a shared back-end. Unlike

a storage system, they let programmers de�ne a custom data model for their applications. BaaS

systems meet some mobile/cloud requirements and help programmers meet the rest. ¿ey are highly

available, responsive and scalable. ¿ey o�er weak or no consistency, and some provide noti�cations

for more e�cient reactivity. However, the application must still be stateless, so programmers must

checkpoint to the back-end (or log to a local disk) a er every operation for fault-tolerance. Finally,

17

programmers typically cannot run application code on the more powerful and secure cloud servers.

More specialized BaaS systems have been developed for application-speci�c cloud functionality.

For example, PlayFish [164, 92], Playfab [163] and GameSparks [72] cater to mobile game developers,

with an API speci�c to that class of applications. Figure 1.6 shows a typical architecture for a mobile

game using a BaaS system.Mobile game Baas systems typically have APIs based on game concepts like

scoreboards, coins, bags, and swords. ¿is specialized API lets the BaaS implement some application

logic in the cloud. For example, mobile gaming BaaS systems o en implement simple game logic (e.g.,

exchanging coins for goods) in the cloud for security and performance. However, BaaS designers must

carefully choose the cloud-side features and system API to meet the speci�c needs of an application

class.

Backend-as-a-
Service

Mobile
App

Clients

Figure 1.6: Backend-as-a-Service architecture.All cloud-side storage and computation is encapsulated

by the back-end system, which presents either a general data store or a more app-speci�c API.

Using BaaS, programmers implement client-side code and rely on the back-end for almost all

mobile/cloud requirements. Like wide-area storage systems, this bene�t eliminates many application

responsibilities. BaaS can o en support applications with more run-time state because their higher

level API naturally reduces accesses to the back-end and moves some computation to cloud servers.

However, these systems work best when tailored to a narrow application class, like mobile games,

which makes them less useful for other applications. Still, BaaS represents the �rst signi�cant move

towards a mobile/cloud operating system, albeit for a narrow set of applications.

18

1.5 Contributions

¿is thesis provides the basis for a new operating system for mobile/cloud applications. It consists of

three new systems: (1) Sapphire, a distributed run-time manager, (2) Diamond, a distributed memory

manager, and (3) TAPIR, a distributed storage system. Figure 1.7 shows the architecture of a new

mobile/cloud OS and how it integrates into the mobile/cloud environment. Table 1.5 lists the OS

components and their functions and new abstractions.

App

Cloud
Server

Mobile
Device

OS

User

Cloud
Server

Mobile
Device

OSOSOS

User User User User User

Mobile/Cloud Operating System

Sapphire
(Runtime Manager)

Diamond
(Memory Manager)

TAPIR
(Storage System)

Figure 1.7:¿e new mobile/cloud operating system.¿emobile/cloud OS spans mobile devices and

cloud servers to provide end-to-end runtime, memory and storage management across the entire

mobile/cloud application.

1.5.1 Run-time Management: Sapphire

Unlike desktop applications, mobile/cloud applications consist of many components partitioned

into distributed processes that communicate and coordinate to implement application features.

19

Table 1.5: Components of the new mobile/cloud operating system. For each component, this table lists

its functions and new abstractions.

OS Component Component Functions OS Abstractions

Run-time Manager • Partition and run application code Sapphire Objects

(Sapphire) • Provide low-level deployment mechanisms Deployment Kernel

• Provide high-level run-time management Deployment managers

Memory Manager • Create copies of shared memory Reactive Data Types

(Diamond) • Link and synchronize shared memory Reactive Data Map (rmap)

• Propagate updates to derived data Reactive Transactions

Storage Manager • Abstract low-level disk interface Key-value interface

(TAPIR) • Mediate concurrent accesses Distributed transactions

• Handle crashes and recover from failures Inconsistent Replication

¿us, Sapphire’s �rst function is deployment: it automatically partitions and runs application code

in distributed processes, provides transparent RPC between processes, and moves and tracks the

location of processes. Sapphire introduces a new abstraction, a Sapphire Object (SO), which forms

the unit of deployment and run-time management for application code.¿e Sapphire kernel provides

best-e�ort, run-time management for Sapphire Objects, including object creation, migration, and

tracking, best-e�ort RPC routing and delivery, and performance monitoring and failure detection.

However, to meet the six mobile/cloud requirements presented in Table 1.2, applications require

more complex run-time management. For example, the application may need to spin-up copies

of an SO (for scalability), replicate an SO (for availability), checkpoint an SO (for fault-tolerance),

or automatically migrate an SO (for responsiveness). As noted previously, di�erent applications

may require di�erent run-time management features depending on the application’s needs and the

20

programmers’ design decisions.

To accommodate the wide range of design choices, Sapphire introduces a new deployment man-

ager abstraction to implement these more complex run-time management features. Deployment

managers are run-time libraries that extend the Sapphire kernel with extra functionality. For example,

they implement replication, RPC logging, and checkpointing to storage as di�erent options to achieve

fault-tolerance.

Application programmers choose one deployment manager per Sapphire object to customize the

run-time management for each part of their application. As a result, programmers can construct a

completely customized run-time manager to meet their application requirements. We designed and

implemented a prototype of the Sapphire system. We discovered its �exibility greatly simpli�es the

run-time management needs for a wide range of mobile/cloud applications.

1.5.2 Memory Management: Diamond

Unlike desktop applications, mobile/cloud applications keep many copies of application state on mo-

bile devices, cloud servers, caches and distributed storage. Further, they increasingly desire reactivity;

that is, they want to automatically propagate updates across these copies, making updates from one

user visible to other users without the need for save or refresh buttons.

Diamond’s core function is to provide shared memory across the distributed processes of a

mobile/cloud application whilemeeting themobile/cloud requirements: anymemory shared through

Diamond is highly available, responsive, scalable, consistent, fault-tolerant and reactive. Diamond

avoids the pitfalls of page-sized memory (e.g., false sharing) by introducing reactive data types

(RDTs) as the unit for sharing. RDTs are simple primitives (e.g., string), simple collections (e.g.,

list), or con�ict-free replicated data types [182] (e.g., set, counter). Diamond integrates a cloud-base

distributed storage system with a key-to-RDT interface to help meet the mobile/cloud requirements.

Mobile/cloud applications place copies of application state in di�erent places for di�erent reasons.

For example, an applicationmight place copies onmobile devices for responsiveness, on cloud servers

for scalability, and on storage servers for fault-tolerance. Diamond lets programmers place copies in

any place for any reason with a new reactive data map (rmap) abstraction. Programmers use rmap to

21

link any in-memory variable to a key in the storage system. Diamond automatically synchronizes all

memory linked to the same key; thus, programmers can create reliable, distributed shared memory

across processes using rmap.

Finally, to automatically propagate updates from RDTs to memory derived from RDTs, Diamond

introduces reactive transactions. Reactive transactions are general-purpose, strongly consistent trans-

actions that automatically re-execute when a rmapped RDT changes. Programmers can use reactive

transactions to synchronize any application component from user interfaces to application-level

caches (e.g., memcached [140]).

With these abstractions, Diamond can synchronize application memory without making assump-

tions about where it lives or how it is organized. As a result, mobile/cloud applications can create a

shared memory space customized to their needs. We built a prototype of the Diamond system and

found that it eliminated complex data management code and strengthened the consistency guarantees

of a wide variety of mobile/cloud applications.

1.5.3 Storage Management: TAPIR

Existingmobile/cloud storage systems force programmers tomake a trade-o�between responsiveness

and consistency.¿us, applications that can cope with consistency errors use weak consistency storage

systems without transactions (e.g., Redis [173], MongoDB [146]); others that require correctness use

strong transactional systems with limited performance (e.g., MegaStore [22]). Because no existing

systems work for a wide range of applications, programmers must understand the system trade-o�s

and change storage systems if their application’s needs change.

TAPIR alleviates this issue by providing a general-purpose storage system with strong guarantees

and good performance. Our key observation is that existing transactional storage systems (e.g.,

Spanner [48], MegaStore [22]) waste performance by using both strongly consistent transaction

protocols and replication protocols. For example, Spanner combines two-phase commit with strict

two-phase locking and Paxos. TAPIR eliminates this wasted work by using a new transaction protocol

that provides consistent transactions atop a new inconsistent replication protocol.

We evaluated TAPIR and found that it halves the commit latency and triples the throughput of

22

existing transactional storage systems. Even better, we found that TAPIR performs comparably to

weak consistency systems, like MongoDB [146]. We verify that TAPIR provides strong linearizable

distributed transactions with a TLA+ model-checked speci�cation. TAPIR �nally eliminates the

trade-o� between responsiveness and consistency, allowing it to meet the needs of a wide range of

mobile/cloud applications.

1.5.4 Summary

Diamond

Storage
SystemMobile/Cloud App

Sapphire TAPIR

Figure 1.8:Mobile/cloud application running on Sapphire, Diamond and TAPIR. Note that all coordi-

nation has moved into the OS components, eliminating di�cult distributed systems problems from

the mobile/cloud application.

Together, Sapphire, Diamond and TAPIR provide a new mobile/cloud operating system that

manages distributed computation, memory, and storage for mobile/cloud applications. Figure 1.8

shows the architecture of a mobile/cloud application running on the three systems integrated into an

OS. Sapphire and Diamond work together to provide a single platform that �exibly and transparently

meets any and all mobile/cloud requirements. Sapphire provides the abstractions andmechanisms for

managing the application’s run-time execution, while Diamond provides shared persistent memory

for storing run-time state. TAPIR coordinates across the nodes of the distributed storage system to

provide strong transactional guarantees to support the needs of Sapphire and Diamond. Together,

23

these three systems o�er mobile/cloud applications a new set of abstractions to manage today’s

programming challenges.

24

2 | Sapphire

As discussed in Section 1.1, run-timemanagement is a key operating system function. Lacking an end-

to-endOS, today’s mobile/cloud programmers performmost run-timemanagement themselves. As a

result, mobile/cloud applications commonly implement distributed run-time tasks: communicating

across multiple devices and servers, o�oading execution from devices to the cloud, and integrating

heterogeneous components with vastly di�erent so ware stacks and hardware resources.

Compared to the desktop environment, the mobile/cloud environment is more resource-limited:

mobile devices have limited computational abilities and the wide-area network has high latency

and low throughput. ¿ese limitations require programmers to make deployment decisions when

implementing run-time tasks, such as:

• Where application processes should be located

• What processes should be replicated or scaled

• What communication is needed to coordinate access to run-time state

¿ese decisions depend on the requirements of each application component – such as scalability

and fault tolerance – which force di�cult performance vs. function trade-o�s. ¿e dependency

between application requirements and deployment decisions leads programmers to mix deployment

decisions with complex application logic in the code, whichmakes mobile/cloud applications di�cult

to implement, debug, maintain, and evolve. Even worse, the rapid evolution of devices, networks,

systems, and applications means that the trade-o�s that impact these deployment decisions are

25

constantly in �ux. For all of these reasons, programmers need a �exible system that allows them to

easily create and modify distributed application deployments without needing to rewrite major parts

of their application.

¿is chapter presents Sapphire, a general-purpose distributed programming platform that greatly

simpli�es the design and implementation of applications spanning mobile devices and clouds. Sap-

phire removes much of the complexity of run-time management in a wide-area, multi-platform

environment, yet still provides developers with the �ne-grained control needed to meet critical appli-

cation needs. A key concept of Sapphire’s design is the separation of application logic from deployment

logic. ¿at is, deployment code is factored out of application code, allowing the programmer to focus

on the application logic. At the same time, the programmer has full control over deployment decisions

and the �exibility to customize them.

Sapphire’s architecture facilitates this separation with a highly extensible distributed kernel and

run-time system. At the bottom layer, Sapphire’s Deployment Kernel (DK) integrates heterogeneous

mobile devices and cloud servers through a set of common low-level mechanisms, including best-

e�orts RPC communication, failure detection, and location �nding. Between the kernel and the

application is a deployment layer – a collection of pluggableDeploymentManager (DM)modules that

extend the kernel to support application-speci�c deployment needs, such as replication and caching.

DMs are written in a generic, application-transparent way, using interposition to intercept important

application events, such as RPC calls. ¿e DK provides a simple yet powerful distributed execution

environment and API for DMs that makes them extremely easy to write and extend. Conceptually,

Sapphire’s DK/DM architecture creates a seamless distributed run-time system that is customized

speci�cally for each application’s requirements.

We implemented a Sapphire prototype on Linux servers and Android mobile phones and tablets.

¿e prototype includes a library of 26 Deployment Managers supporting a wide range of distributed

management tasks, such as consistent client-side caching, durable transactions, Paxos replication,

and dynamic code o�oading between mobile devices and the cloud. Using the kernel’s extension

API, we were able to implement all of the deployment managers in only 10 to 177 lines of code. We

also built 10 Sapphire applications, including a fully featured Twitter clone, a multi-player game, and

26

a shared text editor.

Our experience and evaluation show that Sapphire’s extensible three-layer architecture greatly

simpli�es the construction of both mobile/cloud applications and distributed deployment functions.

For example, a single-line application code change – switching from one DM to another – is su�cient

to transform a cloud-based multi-player game into a P2P (device-to-device) version that signi�cantly

improves the game’s performance. ¿e division of function between the DK and DM layers makes

deployments extremely easy to code; e.g., the DM to support Paxos state machine replication is only

129 lines of code, an order of magnitude smaller than a C++ implementation built atop an RPC

library. We also demonstrate that Sapphire’s structure provides �ne-grained control over performance

trade-o�s, delivering performance commensurate with today’s popular communication mechanisms

like REST.

2.1 Background

Section 1.4 described a some general architectures for mobile/cloud applications. Currently, pro-

grammers must deploy their applications across this patchwork of user devices, cloud servers, and

backend services, while satisfying demanding requirements such as responsiveness and availability.

For example, the programmer might need to apply caching techniques, perform application-speci�c

splitting of code across clients and servers, and develop solutions for fast and convenient data sharing,

scalability, and fault tolerance.

Programmers use tools and systems when they match the needs of their application. In some

cases an existing system might support an application entirely; for example, a simple application that

only requires data synchronization could use a backend storage service like Dropbox [62], Parse [159]

or S3 [176]. More complex applications, though, must integrate multiple tools and systems into a

custom platform that meets their needs. ¿ese systems include server-side storage like Redis [173] or

MySQL [153] for fault-tolerance, protocols such as REST [68] and SOAP [186] or libraries like Java

RMI and¿ri [13] for distributed communication, load-balanced servers for scalability, client-side

caching for lower wide-area latency, and systems for noti�cation [4], coordination [35, 98], and

monitoring [51].

27

Sapphire provides a �exible environment whose extensionmechanism can subsume the functions

of many of these systems, or can integrate them into the platform in a transparent way. Programmers

can easily customize the run-time system tomeet the needs of their applications. In addition, program-

mers can quickly switch deployment solutions to respond to environment or requirement changes, or

simply to test and compare alternatives during development. Finally, Sapphire’s DeploymentManager

framework simpli�es the development or extension of distributed deployment code.

2.2 Architecture

Sapphire is a distributed programming platform designed for �exibility and extensibility. In this

section, we cover our goals in designing Sapphire, the deployment model that we assume, and

Sapphire’s system architecture.

2.2.1 Design Goals

We designed Sapphire with three primary goals:

1. Create a distributed run-time platform spanning devices and the cloud. A common platform in-

tegrates the heterogeneous distributed environment and simpli�es communications, code/data

mobility, and replication.

2. Separate application logic from deployment logic.Application code is focuses on servicing client

requests rather than distribution, simplifying programming, evolution, and optimization.

3. Facilitate system extension and customization. Delegating run-time management to an exten-

sible deployment layer gives programmers the �exibility to easily make or change deployment

options.

Sapphire is designed to deploy applications across mobile devices and cloud servers. ¿is environ-

ment causes signi�cant complexity, as the programmer must stitch together a distributed collection

of highly heterogeneous so ware and hardware components with a broad spectrum of capabilities,

while still meeting application goals.

28

Sapphire is not designed for deploying backend services like Spanner [48] or ZooKeeper [98]; its

applications interact with such backend services using direct calls, similar to current apps. A Sapphire

Deployment Manager can easily integrate a backend service transparently to the application, e.g.,

using ZooKeeper for coordination or Spanner for fault-tolerance. Sapphire is also not designed for

building user interfaces; we expect applications to customize their user interfaces for the devices they

employ.

2.2.2 System Architecture

Sapphire
Object C

Sapphire
Object B

Sapphire
Object A

DM p DM q DM r

Deployment Kernel (DK)

Sapphire
Application

Deployment
Management
Layer

Figure 2.1: Sapphire run-time architecture. A Sapphire application consists of a distributed collection

of Sapphire Objects executing on a distributed Deployment Kernel (DK). A DK instance runs

on every device or cloud node. ¿e Deployment Management (DM) layer handles distribution

management/deployment tasks, such as replication, scalability, and performance.

Figure 2.1 shows an application-level view of Sapphire’s architecture. A Sapphire application,

which encompasses all of the client-side and server-side application logic, consists of a collection of

Sapphire Objects (SOs). Each Sapphire Object functions as a single unit of distribution, like a virtual

node. Sapphire Objects in an application share a logical address space that spans all cloud servers

and client-side devices. ¿at is, a Sapphire application is written so that all SOs can invoke each other

29

directly through simple location-independent procedure calls.

¿e bottom layer of Figure 2.1 is the Deployment Kernel (DK), which is a �exible and extensible

distributed run-time system. It provides only the most basic distribution functions, including SO

addressing and location tracking, best e�ort RPC-based communication, SO migration, and basic

resource management. It does not support more complex tasks, such as fault tolerance, failure man-

agement, reliability, and consistency. In this way, the DK resembles IP-level network messaging – it

is a basic service that relies on higher levels of so ware to meet more demanding program goals.

¿e kernel is thus deployment agnostic and does not favor (or limit the application to) any speci�c

approaches to deployment issues.

More complex management tasks are supported in the deployment layer by extensions to the

DK, called Deployment Managers (DMs). Each Sapphire Object can optionally have an attached DM

– shown in the middle of Figure 2.1 – which provides run-time distribution support in addition to the

minimal features of the DK.¿e programmer selects a DM to manage each SO; e.g., he may choose a

DM that handles failures to improve fault-tolerance, or one to cache data locally on a mobile device

for performance. We have built a library of DMs supporting common distribution tasks used by

applications today.

¿e separation between the DK and DMs provides signi�cant �exibility and extensibility within

the Sapphire distributed programming platform. As extensions to the DK, Deployment Managers

provide additional distribution management features or guarantees for individual SOs. O en, these

features involve performance trade-o�s; thus, not every application or every SO will want or need a

DM. Finally, by separating application logic (in the application program) from deployment logic

(provided byDMs), we greatly reduce application complexity and allow programmers to easily change

application deployment or performance behaviors.

2.3 Programming Model

¿e Sapphire application programming model is object based and could be integrated with any

object-oriented language. Our implementation (Section 2.6) uses Java.

Sapphire Objects are the key programming abstraction for managing application code and data

30

locality at run time. To develop a Sapphire application, the programmer �rst builds the application

logic as a single object-oriented program. He then breaks the application into distributed components

by declaring a set of application objects to be Sapphire Objects. Sapphire Objects can still call each

other via normal method invocation, however, these calls may now be remote invocations. Finally,

the programmer applies Deployment Managers (DMs) to SOs as desired for additional distributed

management features. In this section,wewill show that the Sapphire programmingmodel provides: (1)

ease of programming in a distributed environment, (2) �exibility in deployment, and (3) programmer

control over performance.

De�ningSapphireObjects. Programmers de�ne SapphireObjects as classes using a sapphireclass

declaration, instead of the standard class declaration. As an example, Figure 2.2 shows a code snippet

from our Twitter-clone, BlueBird. All instances of theUser class de�ned here are independent SOs. In

this case, the programmer has also speci�ed a DM for the class, called ConsistentCaching, to enhance

the object’s performance.

SOs can encapsulate internal language-de�ned objects (Java objects in our system), such as

the User string and arrays. ¿ese are shown as small solid circles in Figure 2.1; the solid arrows in

the �gure are references between internal objects within an SO. SO-internal objects cannot move

independently or be accessed directly from outside the SO. ¿e SO is therefore the granularity of

distribution and decomposition in Sapphire. Moving an SO always moves all of its internal objects

along with it; therefore, the programmer knows that all SO-internal objects will always be co-located

with the SO.

A Sapphire Object encapsulates data and computation into a “virtual node” that: (1) ensures that

each data/computation unit (a Sapphire Object) will always have its code and data on the same node,

(2) lets the system transparently relocate or o�oad that unit, (3) supports easy replication of units,

and (4) provides an easy-to-understand unit of failure and recovery. ¿ese bene�ts make Sapphire

Objects a powerful abstraction; using �ne-grained programmer-de�ned Sapphire Objects, instead of

a coarse-grained client/server architecture, increases both �exibility in distributed deployment and

programmer control over performance.

31

1 pu b l i c sapphireclass User uses ConsistentCaching {
2 / / u s e r h a n d l e
3 String username;
4 / / p e o p l e who f o l l o w me
5 User[] followers;
6 / / p e o p l e who I f o l l o w
7 User[] friends;
8
9 pu b l i c String getUsername () {

10 r e t u r n username;
11 }
12 pu b l i c User[] getMyFollowers () {
13 r e t u r n followers;
14 }
15 pu b l i c User[] getPeopleIFollow () {
16 r e t u r n friends;
17 }
18 pu b l i c Tweet[] getMyTweets () {
19 r e t u r n myTweets.getTweets ();
20 }
21 }

Figure 2.2: Example Sapphire object code from BlueBird.

Calling Sapphire Objects. Sapphire Objects communicate using method invocation. ¿e dashed

lines in Figure 2.1 show cross-SO references, which are used to invoke the target SO’s public methods.

Invocation is location-independent and symmetric; it can occur transparently from mobile device to

server, from server to device, from device to device, or between servers in the cloud. An SO can be

moved by its DM or by the DK as a result of resource constraints on the executing node. ¿erefore,

between two consecutive invocations from SO A to SO B, either or both objects can change location;

the DK hides this change from the communicating parties. Invocations can fail, e.g., due to network

or node failure; DMs help to handle failure on behalf of SOs.

SOs are passed by reference. All other arguments and return values from SO invocations are

passed by value. For example, the return value of getUsername() in Figure 2.2 is a copy of the

username object stored inside the SO, while getMyFollowers() returns a copy of the array contain-

ing references to User SOs. ¿is preserves the encapsulation and isolation properties of Sapphire

32

Objects, since it is impossible to export the address of internal objects within them.

Our goal was to create a uniform programming model integrating mobile devices and the cloud

without hiding performance costs and trade-o�s from the programmer. ¿erefore, the programmer

makes explicit choices in the decomposition of the application into SOs; once that choice is made,

the system provides location-independent communication, which simpli�es programming in the

distributed environment.

Choosing DeploymentManagers. Programmers employ the uses keyword to specify a DMwhen

de�ning a Sapphire Object. For example, in Figure 2.2, the sapphireclass declaration (line 1) binds

the ConsistentCaching DM to the User class. In this case, every instance of User created by the

program will have the ConsistentCaching DM attached to it. It is easy to change the DM binding

with a simple change to the sapphireclass de�nition.

Supporting DMs on a class basis lets programmers specify di�erent features or properties for

di�erent application components. While the binding between an SO and its DM could be speci�ed

outside of the language (e.g., through a con�guration �le), we felt that this choice should be visible in

the code because deployment decisions about the SO are closely tied to the requirements of an SO.

Sapphire provides a library of standard DMs, and most programmers will be able to choose

the behavior they want from the standard library. Additionally, DMs are extensible; we discuss the

API for building them in the next section. As programmers can build their own DMs and DMs are

designed to be reusable, we expect the library to grow naturally over time.

An SO can have at most one DM, and each instance of the SO must use the same DM. We

chose these restrictions for simplicity and predictability, both in the design of applications and DMs.

In particular, the behavior of multiple DMs attached to an SO depends on the order in which the

functions of the multiple DMs are invoked, and DMs could potentially interfere with each other. For

this reason, programmers achieve the same result by explicitly composing DMs using inheritance.

¿is allows the programmer to precisely control the actions of the composed DM. Since instances of

the same SO should have the same deployment requirements, we chose not to allow di�erent DMs

for di�erent instances of the same SO.

33

We chose not to allow multiple DMs per SO because it becomes di�cult to predict what the

behavior of combined DMs would be. Instead, we allow explicit composition of DMs through the

DM extension API. Every instance of an SO is managed by an instance of the chosen DM.

DMs separate management code into generic, reusable modules that: (1) automatically deploy

the application in complex ways, (2) give programmers per-application-component control over

deployment trade-o�s, and (3) allow programmers to easily change deployment decisions. ¿ese

advantages make DMs a powerful mechanism for deploying distributed applications.

2.4 Deployment Kernel

Sapphire’s Deployment Kernel is a distributed run-time system for Sapphire applications. At a high

level, the goal of the DK is to create an integrated execution platform across mobile devices and

servers. ¿e key functions provided by the DK include: (1) management and location tracking of

Sapphire Objects, (2) location-transparent inter-object communications (RPC), (3) low-level replica

support, and (4) services to simplify the writing and execution of Deployment Managers.

A DK instance provides best-e�ort deployment of a single Sapphire application. It consists of a

set of servers that run on every mobile and back-end computing device used by the application, and

a centralized Object Tracking System (OTS) for tracking Sapphire Objects.

¿e Sapphire OTS is a distributed, fault-tolerant coordination service, similar to Chubby [35],

ZooKeeper [98] and Tango [23]. ¿e OTS is responsible for tracking Sapphire Objects across DK

servers. DK servers only communicate occasionally with the OTS when creating or moving SOs. DK

servers do not have to contact the OTS on every RPC because SO references contain a cached copy

of the SO’s last location,

Each DK server hosts a number of SOs by acting as an event server for the SOs, receiving and

dispatching RPCs. ¿e DK server also hosts and manages the DMs for those SOs. DK servers

instantiate SOs locally by initializing the SO’s memory, creating its DM (which potentially has

components on multiple nodes), and registering the SO with the OTS. Once created, the server can

move the SO at any time because SO location and movement are invisible to the application.

¿e DK provides primitive SO scheduling and placement. If a DK server becomes overloaded,

34

it will contact the OTS to �nd a new server to host the SO, move the SO to the new server, and

update the OTS with the SO’s new location.¿e DKAPI, described in Section 2.5, provides primitives

that allow DMs to express more complex placement and scheduling policies, such as geo-replicated

fault-tolerance, load balancing, etc.

To route an RPC to an SO, the calling DK server sends the RPC request to the destination server

cached in the SO reference. If the destination no longer hosts the SO, the caller contacts the OTS to

obtain the new address. If the destination DK server is unavailable, the calling server simply returns

an error, because RPC in the DK is always best e�ort; DMs implement more advanced RPC handling,

like retrying RPCs, routing RPCs between replicas, etc.

DK servers are not fault-tolerant: when they fail, they simply reboot. ¿at is, on recovery, DK

servers do not recover the SOs that they hosted on failure; they simply register with the OTS and

begin hosting new SOs. Failures are entirely handled by DMs. We assume there is a failure detection

system, such as FALCON [123], to notify the OTS when servers fail, which will then notify the DMs

of the SOs that were hosted on the failed server.

We expect devices to be Internet connected most of the time, since applications today frequently

depend on online access to cloud servers. When a device becomes disconnected, its DK server

continues to run, however the application will be unable to make or receive remote RPCs. ¿erefore,

any SOs hosted on a disconnected device will be inaccessible to outside devices and servers. ¿e OTS

keeps a list of mobile device IP addresses in order to quickly re-register SOs hosted on those devices

when they reconnect. DMs can provide more advanced o�ine access.

2.5 Deployment Managers

A key feature of the Sapphire kernel is its support for the programming and execution of Deployment

Managers,which customize and control the behaviorof individual SOs in the distributedmobile/cloud

environment. ¿e DK provides direct API support for DMs. ¿at API is available to DM developers,

who we expect to be more technically sophisticated than application developers, although the DM

framework can be used by anyone to customize or build new DMs. As this section will show, DMs

can accomplish complex distributed deployment tasks with surprisingly little code. ¿is is due to the

35

careful factoring of function between the DMs and the DK: the DK does the heavy li ing, while the

DMs simply tell the DK what to li through the DK’s API.

2.5.1 DM Library

Table 2.1: Library of Deployment Managers.

Category Extension Description LoC

Primitives Immutable E�cient distribution and access for immutable SOs 19

AtLeastOnceRPC Automatically retry RPCs for bounded amount of time 27

KeepInPlace Keep SO where it was created (e.g., to access device-speci�c APIs) 15

KeepInCloud Keep SO on cloud server (e.g., for availability) 15

KeepOnDevice Keep SO on accessing client device and dynamically move 45

Caching ExplicitCaching Caching w/ explicit push and pull calls from the application 41

LeaseCaching Caching w/ server granting leases, local reads and writes for lease-holder 133

WriteThroughCaching Caching w/ writes serialized on the server and stale, local reads 43

ConsistentCaching Caching w/ updates sent to every replica for strict consistency 98

Serializability SerializableRPC Serialize all RPCs to SO with server-side locking 10

LockingTransactions Multi-RPC transactions w/ locking, no concurrent transactions 81

OptimisticTransactions Transactions with optimistic concurrency control, abort on con�ict 92

Checkpointing ExplicitCheckpoint App-controlled checkpointing to disk, revert last checkpoint on failure 51

PeriodicCheckpoint Checkpoint to disk every N RPCs, revert to last checkpoint on failure 65

DurableSerializableRPC Durable serializable RPCs, revert to last successful RPC on failure 29

DurableTransactions Durably committed transactions, revert to last commit on failure 112

Replication ConsensusRSM-Cluster Single cluster replicated SO w/ atomic RPCs across at least f + 1 replicas 129

ConsensusRSM-Geo Geo-replicated SO w/ atomic RPCs across at least f + 1 replicas 132

ConsensusRSM-P2P SO replicated across client devices w/ atomic RPCs over f + 1 replicas 138

Mobility ExplicitMigration Dynamic placement of SO with explicit move call from application 20

DynamicMigration Adaptive, dynamic placement to minimize latency based on accesses 57

ExplicitCodeOffloading Dynamic code o�oading with o�oad call from application 49

CodeOffloading Adaptive, dynamic code o�oading based on measured latencies 95

Scalability LoadBalancedFrontEnd Simple load balancing w/ static number of replicas and no consistency 53

ScaleUpFrontEnd Load-balancing w/ dynamic allocation of replicas and no consistency 88

LoadBalancedMasterSlave Dynamic allocation of load-balanced M-S replicas w/ eventual consistency 177

36

Sapphire provides programmerswith a library ofDMs that encompassmanymanagement features,

including controls over placement and RPC semantics, fault-tolerance, load balancing and scaling,

code-o�oading, and peer-to-peer deployment. Table 2.1 lists the DMs that we have built along with

a description and the LoC count1 for each one. We built these DMs both to provide programmers

with useful DMs for their applications and to illustrate the �exibility and programming ease of the

DM programming framework.

2.5.2 DM Structure and API

We designed the DM API to provide as minimal an interface as possible while still supporting a wide

range of extensions. A DM extends the functionality of the DK to meet the deployment requirements

of a speci�c SO by interposing on DK events for the SO. For example, on an RPC to the SO, the DK

will make an upcall into the DM for that SO. DMs are implemented as objects, therefore each DM

can execute code on each upcall and store state between upcalls.

ADM consists of three component types: the Proxy, the InstanceManager, and theCoordinator. A

programmer builds a DM by de�ning three object classes, one for each type. Since DMs are intended

to manage distribution, the DK creates a distributed execution environment in which they operate;

i.e., a DM is itself distributed and its components can operate on di�erent nodes. When the DK

instantiates a Sapphire Object with an attached DM, it also instantiates and distributes the DM’s

components. ¿e DK provides transparent RPC between the DM components of an SO instance for

coordination between components.

Figure 2.3 shows an example deployment of the DM components for a single Sapphire Object A.

¿e DKmay instantiate many Proxies and Instance Managers but at most one Coordinator, as shown

in this �gure. ¿e center box (marked “Instance A”) indicates that A has two replicas, marked replica

1 and replica 2. Each replica has its own copy of the Instance Manager. Were the DM to request a

third replica of A, the DK would also create a new Instance Manager for that replica. A replica and

its Instance Manager are always located on the same node.

1Generated using SLOCCount [216].

37

CentralizedInstance AReferences

Deployment Kernel (DK)

Sapphire Object A with Deployment Manager

Stub

Proxy
Stub

Proxy

Stub

Proxy

Instance Mgr

Instance Mgr

DK-FT

Coordinator

Stub

Proxy

replica 1

replica 2

Figure 2.3: Deployment Manager (DM) organization.¿e components named Proxy, Instance Mgr,

and Coordinator are all part of the DM for one Sapphire Object instance (shown here with two

replicas). DK-FT is a set of fault-tolerant DK nodes, which also host the OTS, that support reliable

centralized tasks for DMs and the DK.

Each component of the DM is responsible for a particular set of distributed tasks. Proxies are

responsible for caller-side tasks, like routing method calls. Instance Managers are responsible for

callee-side tasks, like keeping replicas of the SO synchronized. Note that, due to the symmetric nature

of SOs, the caller of the method may be on a cloud server and the SO itself may be on a client

device. Lastly, the Coordinator is responsible for centralized tasks such as failure handling. All three

components are optional; a DM can de�ne one ormore of the components, and theDKwill instantiate

only those components that are de�ned.

¿e DK completely manages DM components; they run only when invoked, they reside only

where the DK places them and are limited to communicating with other components in the same

DM instance, which are attached to a single SO. ¿e DK invokes DM components using upcalls,

which are shown in Table 2.2. Each component receives a di�erent set of upcalls according to the

38

Table 2.2: Deployment Managers Upcall API.

Event Description

onCreate Creation of SO instance

onRPC Method invocation on SO

onFailure Replica failed

onDestroy Coordinator eliminated SO

onHighLatency Avg. RPC latency > limit
onLowMemory Node running out of memory

onMemberChange New replica added to group

onRefRequest Request for an SO reference

component’s responsibilities. By interposing on Sapphire Object events such as method invocations,

DMs can implement a variety of distributed management features transparently and generically.

In each upcall, the DM component can perform various management tasks on the SO using a set

of primitives supported by the DK. Table 2.3 lists these primitives. ¿e DM components of an SO

instance can communicate directly with each other through a transparent RPC mechanism provided

by the DK. Note that the DK supports only the most basic replication functions, namely, creating a

new replica for an SO and reporting on replica locations. All decisions about the number of replicas,

when to create or delete them, how to synchronize them, and how to handle failures occur at the DM

level.

¿e le -most box in Figure 2.3 shows four other SOs. Each contains a reference to A, shown as

an RPC stub in the �gure, to which the DK has attached an instance of A’s DM Proxy component.

Making an RPC to A through the DK and its DM proceeds as follows. ¿e DK re�ects the call via an

onRPC() upcall to the attached Proxy. ¿e upcall to the Proxy lets A’s DM intercept an RPC on the

caller’s node where, for example, it can implement client-local caching. If the Proxy wants to forward

the call to replica 1 of A, it simply invokes replica 1’s Instance Manager which runs in the same DK

39

server as replica 1. ¿e Instance Manager will pass the RPC through to replica 1 of A.

Because the Proxies and Instance Managers for A are all part of the same Deployment Manager,

they all understand whether or not the SO (A, in this case) is replicated, and, if so, how that replication

is implemented. ¿e choice of which replica to call is made inside the DM components, which are

aware of each other and can communicate with each other directly through RPCs.

Finally, the DK instantiates one Coordinator for eachDM instance, shown in the right-most box of

Figure 2.3. ¿e OTS manages Coordinators, keeping them fault-tolerant and centrally accessible. It is

well known that a centralized coordinator can simplify many distributed algorithms (e.g., eliminating

the need for leader election). Since the DK needs the OTS to tracking Sapphire Objects, it was easy

to provide fault-tolerance for some DMs as well. We do not expect every DM to have a Coordinator,

and even if there is a Coordinator, it is used sparingly for management tasks that are easiest handled

centrally, such as instantiating new replicas in the event of failures. In this sense, Coordinators are

similar to other centralized management systems, like Chubby [35] or ZooKeeper [98].

Programmers can easily extend or compose existing DMs using inheritance.¿e newDM inherits

all of the behavior of the super-DM’s Component object classes. ¿e programmer can then override

or combine upcalls in each component. While we considered automatic composition, we believe that

the DM programmer should be involved to ensure that the composed DM implements exactly the

behavior that the programmer expects. Our experience with composing DMs has shown that the use

of inheritance for DM composition is straightforward and intuitive.

2.5.3 DM Code Example

Figure 2.4 shows a simpli�ed de�nition of the LeasedCaching DM that we provide in the Sapphire

Library. We include code for the Proxy component and the function declarations from the Instance

Manager. ¿is DM does not have a Coordinator because it does not need centralized management.

¿e LeasedCaching DM is not replicated, so DK will only create one Instance Manager. ¿e

Instance Manager hands out mutually exclusive leases to Proxies (which reside with the remote

reference to the SO) and uses timeouts to deal with failed Proxies. ¿e Proxy with a valid lease can

read or write to a local copy of the SO. Read-only operations do not incur communication costs,

40

Table 2.3: DK API for Deployment Managers.

Operation Description

invoke(RPC) Invoke RPC on the local SO

invoke(SO,RPC) Invoke RPC on a speci�c SO

getNode() Get ID for local node

getNodes() Get list of all nodes

pin(node) Move SO to a node.

setHighLatency(ms) Set limit for RPC latency

durable_put(SO) Save copy of the SO

durable_get(key) Retrieve SO

replicate() Create a replica

destroyReplica(IM) Eliminate a replica

getReplicas() Get list of replicas for SO

getReplica() Get ref to SO instance

setReplica(SO) Set ref to SO instance

copy(SO) Create a copy of the SO instance

diff(SO,SO) Di� two SO instances

sync(SO) Synchronize two SO instances

getIM() Get ref to DM Instance Mgr

setIM(IM) Set reference to DM Instance Mgr

getCoordinator() Get ref to DM Coordinator

getReference(IM) Create DM Proxy for IM

registerMethod(m) Register a custom method for DM

getRegion() Get ID for local region

getNode() Get ID for local node

pin(region) Move SO to region

pin(node) Move SO to node

getRegions() Get list of server regions

getNodes() Get list of nodes in local region

41

1 pu b l i c c l a s s LeasedCaching extends DManager {
2 pu b l i c c l a s s LCProxy extends Proxy {
3 Lease lease;
4 SapphireObject so;
5
6 pu b l i c Object onRPC(SapphireRPC rpc) {
7 i f (!lease.isValid () || lease.isExpired ()) {
8 lease = Sapphire.getReplica (). getLease ();
9 i f (!lease.isValid ()) {

10 throw new SONotAvailableException(
11 ``Could not get lease.'');
12 } e l s e {
13 so = lease.getSO ();
14 }
15 }
16
17 SapphireObject oldSO = Sapphire.copy(so);
18 Sapphire.invoke(so , rpc);
19 SOStream diff = Sapphire.diff(oldSO , so);
20 i f (diff) Sapphire.getReplica (). update(diff);
21 }
22 }
23
24 pu b l i c c l a s s LCReplica extends InstanceManager {
25 pu b l i c synchronized Lease getLease ();
26 pu b l i c synchronized vo id update(SOStream);
27 / / Code f o r I n s t a n c e Manager me thod s
28 }
29 }

Figure 2.4: Example Deployment Manager with arguments.

which saves latency over a slow network, but updates are synchronously propogated to the Instance

Manager in case of Proxy failure.

When the application invokes a method on an SO with this DM attached, the caller’s Proxy: (1)

veri�es that it holds a lease, (2) performs the method call on its local copy, (3) checks whether the

object has been modi�ed (using diff()), and (4) synchronizes the remote object with its cached

copy if the object changed, using an update() call to the Instance Manager.

Each Proxy stores the lease in the Lease object (line 3) and a local copy of the Sapphire Object

(line 4). If the Proxy does not hold a valid lease, it must get one from the Instance Manager (line

42

8) before invoking its local SO copy. If the Proxy is not able to get the lease, the DM throws a

SONotAvailableException (line 10).¿e application is prepared for any RPC to an SO to fail, so it will

catch the exception and deal with it. ¿e application also knows that the SO uses the LeasedCaching

SOM, so it understands the error string (line 11).

If the Proxy is able to get a lease from the Instance Manager, the lease will contain an up-to-date

copy of the SO (line 13). ¿e Proxy will make a clean copy of the SO (line 17), invoke the method on

its local copy (line 18) and then di� the local copy with the clean copy to check for updates (line 19).

If the SO changed, the Proxy will update the Instance Manager’s copy of the SO (line 20). ¿e copy

and di� is necessary because the Proxy does not know which SO methods might write to the SO,

thus requiring an update to the Instance Manager. If the DM had more insight into the SO (i.e., the

SO lets the DM know which methods are read-only), we could skip this step.

¿e example illustrates a few interesting properties of DMs. First, DM code is application agnostic

and can perform only a limited set of operations on the SO that it manages. In particular, it can

interpose only on method calls to its SO, and it manipulates the managed SO as a black box. For

example, there are DMs that automatically cache an SO, but no DMs that cache a part of an SO. ¿is

ensures a clean separation of object management code from application logic and allows the DM to

be reused across di�erent applications and objects.

Second, a DM cannot span more than one Sapphire Object: it performs operations only on the

object that it manages. We chose not to support cross-SO management because it would require

the DM to better understand the application; as well, it might cause con�icts between the DMs of

di�erent SOs. As a result, there are DMs that provide multi-RPC transactions on a single SO, but we

do not support cross-SO transactions. However, the programmer could combine multiple Sapphire

Objects into one SO or implement concurrency support at the application level to achieve the same

e�ect.

2.5.4 DM Design Examples

¿is section discusses the design and implementation of several classes of DMs from the Sapphire

Library, listed in Table 2.1. Our goal is to show how the DM API can be used to extend the DK for a

43

wide range of distributed management features.

Code-o�oading. ¿e code-o�oading DMs are useful for compute-intensive applications. ¿e

CodeOffloading DM supports transparent object migration based on the performance trade-o�

between locating an object on a device or in the cloud, while the ExplicitCodeOffloading DM allows

the application to decide when to move computation. ¿e ExplicitCodeOffloading DM gives the

application more control than the automated CodeOffloading DM, but is less transparent because

the SO must interact with the DM.

Once the DK creates the Sapphire Object on a mobile device, the automated CodeOffloadingDM

replicates the object in the cloud. ¿e device-side DM Instance Manager then runs several RPCs

locally and asks the cloud-side Instance Manager to do the same, calculating the cost of running

on each side. An adaptive algorithm, based on Q-learning [214], gradually chooses the lowest-cost

option for each RPC. Periodically, the DM retests the alternatives to dynamically adapt to changing

behavior since the cost of o�oading computation depends on the type of computation and the

network connection, which can change over time.

Peer-to-peer. We built peer-to-peer DMs to support the direct sharing of SOs across client mobile

devices without needing to go through the cloud. ¿ese DMs dynamically place replicas on nodes

that contain references to the SO. We implemented the DM using a centralized Coordinator that

attempts to place replicas as close to the callers as possible, without exceeding an application-speci�ed

maximum number of replicas. We show the performance impact of this P2P scheme in Section 2.7.

Replication. ¿e Sapphire Library contains three replication DMs that replicate a Sapphire Object

across several servers for fault tolerance. ¿ey o�er guarantees of serializability and exactly-once

semantics, along with fault-tolerance. ¿ey require that the SO is deterministic and only makes

idempotent calls to other SOs.

¿e Library’s replication DMs model the SO as a replicated state machine (RSM) that executes

operations on a master replica. ¿ese DMs all inherit from a common DM that implements the

44

RSM, then extend the common DM to implement di�erent policies for replica placement (e.g.,

Geo-replicated, P2P).

¿e RSM DM uses a Coordinator to instantiate the desired number of replicas, designate a leader,

andmaintain information regarding themembership of the replica group.¿e Coordinator associates

an epoch number with this information, which it updates whenever membership changes.

For each RPC, Instance Managers forward the request to the Instance Manager of the master

replica, which logs the RPC and assigns it an ID. ¿e master then sends the ID and epoch number

to the other Instance Managers, which accept it if they do not have another RPC with the same ID.

If the master receives a response from at least f other Instance Managers, it executes the RPC and

synchronizes the state of the SO on the other replicas. If one of the replicas fails, the DK noti�es the

Coordinator, which allocates a new replica, designates a leader, starts a new epoch, and informs other

replicas of the change.

Scalability. To scale Sapphire Objects that handle a large number of requests, the Sapphire Library

includes both stateless and stateful scalabilityDMs.¿e LoadBalancedFrontEndDMprovides simple

load balancing among a set number of replicas. ¿is DM only supports Sapphire Objects that are

stateless (i.e., do not require consistency between replicas); however, the SO is free to access state in

other Sapphire Objects or on disk. ¿e ScaleUpFrontEnd DM extends the LoadBalancedFrontEnd

DM with automatic scale-up, ¿e DM monitors the latency of requests and creates new replicas

when the load on the SO and the latency increases. Finally, the LoadBalancedMasterSlave provides

scalability for read-heavy workloads by dynamically allocating a number of read-only replicas that

receive updates from the master replica. ¿is DM uses the Coordinator to organize replicas and

select the master. We show the utility of our scalability DMs in Section 2.7.

Discussion. ¿e DM’s upcall API and its associated DK API are relatively small (only 8 upcalls

and 27 DK calls), yet powerful enough to cover a wide range of sophisticated deployment tasks.

Most of our DMs are under a hundred lines of code. ¿ere are three reasons for this e�ciency of

expression. First is the division of labor between the DMs and the DK.¿e DK supports fundamental

45

mechanisms such as RPC, object creation and mobility, and replica management. ¿erefore, the DK

performs the majority of the work in deployment operations, while the DMs simply tell the DK what

work to perform.

Second is the availability of a centralized, fault-tolerant Coordinator in the DM environment.

¿is reduces the complexity of many distributed protocols; e.g., in the ConsensusRSM DMs, the

Coordinator simpli�es consensus by determining the leader and group membership. Our three

replication DMs share this code but make di�erent replica placement decisions, meeting di�erent

goals and properties with the same mechanism. Inheritance facilitates the composition of new DMs

from existing ones; e.g., the DurableTransactionsDM builds upon the OptimisticTransactionsDM,

adding fault-tolerance with only 20 more lines of code.

Finally, the decomposition of applications into Sapphire Objects greatly simpli�es DM implemen-

tation. We implemented the code-o�oading DM in only 95 LoC because we do not have to determine

the unit of code to o�oad dynamically, and because the application provides a hint that the SO is

compute-intensive by choosing the DM. In contrast, current code-o�oading systems [52, 85, 42]

are much more complex because they lack information on application behavior and because the

applications are not easily composed into locality units, such as objects.

2.6 Implementation

Our DK prototype was built using Java to accommodate Android mobile devices. Altogether, the DK

consists of 12,735 lines of Java code, including 10,912 lines of Apache Harmony RMI code, which we

had to port to Dalvik. Dalvik was developed based on Apache Harmony, but does not include an

implementation for Java RMI.

Figure 2.5 shows the prototype’s architecture. We used Sun’s Java 1.6.0_38 JVM to run Sapphire in

the cluster, while the tablets and phones ran Sapphire on the Android 4.2 Dalvik VM. We used Java

RMI for low-level RPCs between DK nodes. We used Voldemort [212] as the storage back-end for

our checkpointing DMs.

Java RMI provides only point-to-point communication and only supports calls to Java objects

that have a special Java RMI-provided interface. ¿us, we could only use Java RMI for low-level

46

Mobile Cloud

AndroidAndroidAndroid LinuxLinuxLinux

DM Layer

Application

JVMJVMJVMDalvikDalvikDalvik

An
dr

oi
d

SD
K

An
dr

oi
d

SD
K

Backend
Services
Backend
Services

Deployment Kernel (DK)

Figure 2.5: Sapphire application and run-time system implementation.

communication between DK servers and the OTS. To achieve transparent communication between

SOs and between DM components, we built a compiler (862 LoC) that creates stubs for SOs and

for DM Instance Managers and Coordinators. Having a stub for each SO allows the DK server to

route RPCs and invoke DM components on the callee and caller side. DM Instance Managers and

Coordinators also require stubs because the DK needs to be able to support transparent RPC from

Instance Managers and Proxies. ¿e compiler generates stubs as Java classes that extend the class of

the target object, replacing all method contents with forwarding functions into the DK. A stub is

therefore a reference that can be used for transparent communication with the remote object through

the DK.

We also rely on Apache Harmony’s implementation of RMI serialization – with Java re�ection to

marshall and unmarshall objects – for sending, di�ng and copying objects. We did no optimization

of Java RMI at all in this prototype. We could have applied well-known techniques [133, 162, 154] to

improve RPC performance and expect to do so in the future; however, as we show in our evaluation,

our performance is competitive with widely used client-server mechanisms, such as REST. In order

to achieve this performance on mobile devices, we had to �x several bugs that caused performance

problems in the Apache Harmony RMI code that we ported to Android.

47

Our prototype does not currently include secure communication between DK servers. Java RMI

supports SSL/TLS, so our prototype could easily support encrypted communication between DK

servers. We would also require an authentication mechanism for registering DK servers on mobile

devices, like Google SSO [83].

In today’s applications, mechanisms such as access control checks are typically provided by

the application. With a uni�ed programming platform like Sapphire, it becomes possible to move

security mechanisms into the platform itself. While this discussion is outside the scope of the paper,

we are currently exploring the use of information �ow control-based protection for mobile/cloud

applications in the context of Sapphire’s object and DK/DM structure.

2.7 Experience & Evaluation

¿is section presents qualitative and quantitative evaluations of Sapphire. We �rst describe our

experience building new applications and porting applications to Sapphire. Second, we provide

low-level DK performance measurements, and an evaluation of several DMs and their performance

characteristics. Our experience demonstrates that: (1) Sapphire applications are easy to build, (2)

the separation of application code and deployment code, along with the use of symmetric (i.e., non-

client-server) communication, maximizes �exibility and choice of deployment for programmers,

and (3) Deployment Managers can be used e�ectively to improve performance and scalability in a

dynamic distributed environment.

2.7.1 Applications

We consider the design and implementation of several Sapphire applications with respect to three

objectives:

• Development Ease: It should be easy to developmobile/cloud applications either from scratch

or by porting non-distributed mobile device applications to Sapphire. Furthermore, it should

be possible to write application code without explicitly addressing distribution management.

48

• Deployment Flexibility:¿e programmer should be able to choose from alternative distribu-

tion management schemes and change deployment decisions without rewriting application

code.

• Management Code Generality: It should be possible to develop generic distribution manage-

ment/deployment components that can be used widely both within an application and across

di�erent applications.

Table 2.4: Sapphire applications.We divide each application into front-end code (the UI) and back-

end code (application logic). ¿e source column indicates whether we developed new native Sapphire

code or ported open-source code to Sapphire.

Back-end Front-end

Application Source LoC Source LoC

To Do List Native 48 Native 132

Text/Table Editor Native 409 Native 533

Multi-player Game Native 588 Native 1,186

BlueBird Native 783 Ported 13,009

Sudoku Solver Ported 76 - -

Regression Ported 348 - -

Image Recognition Ported 102 - -

Physics Engine Ported 108 - -

Calculus Ported 818 - -

Chess AI Ported 427 - -

Table 2.4 lists several applications that we built or ported, along with their LoC. We built three

applications from scratch: an online to-do list, a collaborative text and table editor, and a multi-player

49

game. We also built a fully-featured Twitter clone, called BlueBird, and paired it with the front-end UI

from Twimight [205], an open-source Android Twitter client. ¿e table also lists six non-distributed,

compute-intensive applications that we ported to Sapphire.

Development Ease. It took relatively little time and programming experience to develop Sapphire

applications. In particular, the existence of a DM library lets programmers write application logic

without needing to manage distribution explicitly. Two applications – the multi-player game and

collaborative editor – were written by undergraduates who had never built mobile device or web

applications and had little distributed systems experience. In under a week, each student wrote a

working mobile/cloud application of between 1000 and 1500 lines of code consisting of �ve or six

Sapphire Objects spanning the UI and Sapphire back-end.

Porting existing applications to Sapphire was easy as well. For the compute-intensive applications,

a single line change was su�cient to turn a Java object into a distributed SO that could adaptively

execute either on the cloud or the mobile device. We did not have to handle failures because the

CodeOffloadDM hides them by transparently re-executing the computation locally when the remote

site is not available. An undergraduate ported all six applications – and implemented theCodeOffload

DM as well – in less than a week.

Our largest application was BlueBird, a Twitter clone that was organized as ten Sapphire Objects:

Tweet,Tag,TagManager,Timeline,UserTimeline,HomeTimeline,MentionsTimeline,FavoritesTimeline,

User and UserManager. We implemented all Twitter functions except for messaging and search in

under 800 lines. In comparison, BigBird [60], an open-source Twitter clone, is 2563 lines of code,

and Retwis-J [122], which relies heavily on Redis search functionality, is 932 lines of code.

Distributed mobile/cloud applications must cope with the challenges of running on resource-

constrained mobile devices, unreliable cloud servers, and high-latency, wide-area links. Using Sap-

phire, these challenges are handled by selecting DMs from the DM library, which greatly simpli�es

the programmer’s task and makes it easy to develop and test alternative deployments.

50

Deployment Flexibility. Changing an SO’s DM, which changes its distribution properties, requires

only a one-line code change. We made use of this property throughout the development of our

applications as we experimented with our initial distribution decisions and tried to optimize them.

In BlueBird, for example, we initially chose not to make Tweet and Tag into SOs; since these

objects are small and immutable, we thought they did not need to be independent, globally shared

objects. Later, we realized that it would be useful to refer directly to Tweets and Tags from Timeline

objects rather than accessing them through another SO. We therefore changed them to SOs – a trivial

change – and then employed ExplicitCaching for both of them to reduce the network delay for reads

of the tweet or tag strings.

As another example, we encountered a deployment decision in the development of our multi-

player game. ¿e Game object lasts only for the duration of a game and can be accessed only from

two devices used to play. Since the object does not need high reliability or availability, it can be

deployed in any number of ways: on a server, on one of the devices, or on both devices. We �rst

deployed the Game object on a cloud server and then decided to experiment with peer-to-peer

alternatives. Changing from the cloud deployment to peer-to-peer using the KeepOnDevice and

ConsensusRSM-P2Pmanagers in our DM library required only a single line change, and improved

performance (see Section 2.7.4) and allowed games to continue when the server is unavailable. In

contrast, changing an application for one of today’s systems from a cloud deployment to a peer-to-

peer mobile device deployment would require signi�cant application rewriting (and might even be

impossible without an intermediary cloud component due to the client-server nature of existing

systems).

Management Code Generality. We applied several DMs to multiple SOs within individual appli-

cations and across applications. For example, many of our applications have an object that is shared

among a small number of users or devices (e.g., ToDoList, Document, etc.). To make reads faster

while ensuring that users see immediate updates, we used the ConsistentCaching DM for all of these

applications. Without the DM structure, the programmers would have to write the caching and

synchronization code explicitly for each case.

51

Table 2.5: Sapphire latency comparison. Request latencies (ms) for local, server-to-server, tablet-to-

server, server-to-tablet and tablet-to-tablet. Note that REST does not support communication to

tablets.

RPC Protocol Local S→S T→S S→T T→T

Sapphire 0.08 0.16 5.9 3.4 12.0

Java RMI 0.05 0.12 4.6 2.0 7.2

¿ri 0.04 0.11 2.0 2.0 3.6

REST 0.49 0.64 7.9 - -

0K

20K

40K

60K

80K

100K

120K

 0 20 40 60 80 100 120

R
eq

ue
st

s/
s

Clients

Java RMI null RPC
Sapphire null RPC

Figure 2.6: Sapphire throughputmeasurement.¿roughput of a SapphireObject versus anRMIObject.

Even within BlueBird, which has 10 Sapphire Object types, we could reuse several DMs. If the

deployment code for each BlueBird SO had to be implemented in the application, the application

would grow by at least 800 LoC, more than doubling in size! ¿is number is conservative: it assumes

the availability of the DM API and the DK for support. Without those mechanisms, even more code

would be required.

52

2.7.2 Experimental Setup

Our experiments were performed on a homogeneous cluster of server machines and several types of

devices (tablets and phones). Each server contained 2 quad-core Intel Xeon E5335 2.00GHz CPUs

with 8GB of DRAM running Ubuntu 12.04 with Linux kernel version 3.2.0-26. ¿e devices were

Nexus 7 tablets, which run on a 1.3 GHz quad-core Cortex A9 with 1 GB of DRAM, and Nexus S

phones with a 1 GHz single-core Hummingbird processor and 512MB of DRAM.¿e servers were all

connected to one top-of-rack switch. ¿e devices were located on the same local area network as the

servers, and communicated with the server either through a wireless connection or T-mobile 3G

links.

2.7.3 Microbenchmarks

We measured the DK for latency and throughput using closed-loop RPCs. Latencies were measured

at the client. Before taking measurements, we �rst sent several thousand requests to warm up the

JVM to avoid the e�ects of JIT and bu�ering optimizations.

RPC Latency Comparison. We compared the performance of Sapphire RPC to Java RMI and to

two widely used communication models: ¿ri and REST. Apache¿ri [13] is an open-source RPC

library used by Facebook, Cloudera and Evernote. REST [68] is a popular low-level communication

protocol for the Web; many sites have a public REST API, including Facebook and Twitter. We

measured REST using a Java client running the standard HttpURLConnection class and a PHP script

running on Apache 2.2 for method dispatch.

Table 2.5 shows request/response latencies for intra-node (local), server-to-server, tablet-to-server,

server-to-tablet and tablet-to-tablet communications on null requests for all four systems. While

¿ri was slightly faster in all cases, Java RMI and Sapphire were comparable and were both faster

than the Java REST library.

Sapphire uses Java RMI for communication between DK servers; however, we dispatch method

calls to SOs through the DK. ¿is additional dispatch caused the latency di�erence between Java

53

RMI and Sapphire RPC. ¿e extra cost was primarily due to instantiating and serializing Sapphire’s

RPC data object (which is not required for a null Java RMI RPC). We could reduce this cost by using

a more e�cient RPC and serialization infrastructure, such as ¿ri .

Note that even without optimization, Sapphire was faster than REST, which is probably the most

widely used communication framework today. Furthermore, we could not show REST performance

for server-to-tablet and tablet-to-tablet because REST’s client-server architecture cannot acceptHTTP

requests on the tablet. ¿us, REST can be used only for tablet-to-server communication, requiring

the application to explicitly manage communication forms such as server-to-client or client-to-client.

¿roughput Comparison. Wemeasured request throughput for the Sapphire DK and Java RMI.

¿e results (Figure 2.6) showed similar throughput curves, with Java RMI object throughput ap-

proximately 15% higher than that for Sapphire Objects. ¿is is because Sapphire null RPCs are not

truly empty: they carry a serialized structure telling the DK how to direct the call. To break the cost

down further, we measured the throughput of a Java RMI carrying a payload identical to that of

the Sapphire null RPC. ¿is reduced the throughput di�erence to 3.6%; this 3.6% is the additional

cost of Sapphire’s RPC dispatching in the DK, with the remainder due to the cost of serialization for

the dispatching structure. Again, there are many ways to reduce the cost of this communication in

Sapphire, but we leave those optimization to future work.

Sapphire DK Operation Cost. Wemeasured the latency of several DK services. DK call latency

depends on the size and complexity of the object, since we use Java serialization. Table 2.6 shows

latency results for creating, replicating, and moving SOs on servers and tablets. Operation latencies

were low when executed on cloud servers. Tablets were considerably slower than cloud servers.

However, we expect most management operations such as these to be performed in the cloud (i.e.,

we do not expect tablets to create large numbers of SOs).

¿e SO instantiation process can be expensive because the DK must create several objects locally:

the SO, the SO stub, the DM Proxy and the DM Instance Manager. ¿e DK must also create the DM

Coordinator remotely on a DK-FT node and register the SO with the OTS. Communication with the

54

DK-FT node and the OTS accounted for nearly half the instantiation latency.

Table 2.6: Sapphire Deployment Kernel API latency measurement (ms).

create replicate move (over WiFi)

Object S T S T S→S T→S S→T T→T

Table 1.1 28 0.5 15 1.9 42 16 66

Game 1.1 29 0.5 16 2.1 49 19 67

TableMgr 1.1 27 0.6 18 2.2 50 16 78

2.7.4 Deployment Manager Performance

We measured the performance of �ve categories of DMs: caching, replication, peer-to-peer, mobility,

and scalability. Our goal was to examine their e�ectiveness as extensions to the DK and the costs and

trade-o�s of employing di�erent DMs.

Caching.We evaluated two caching DMs: LeaseCaching and ConsistentCaching. As expected,

caching signi�cantly improved the latency of reads in both cases. For theTodoList SO, which uses the

LeaseCaching DM, caching reduced read latency from 6 ms to 0.5 ms, while write latency increased

from 6.1 ms to 7.5 ms. For the Game SO, which uses the ConsistentCaching DM, all read latencies

decreased, from 7-13 ms to 2-3 ms. With consistent caching, the write cost to keep the caches and

cloud synchronized was signi�cant, increasing from 29 ms to 77 ms. Overhead introduced by the

DM was due to the use of serialization to determine read vs. write operations. For writes, the whole

object was sent to be synchronized with the cloud, instead of a compact patch.

Codeo�oading.Wemeasuredourported,compute-intensive applicationswith theCodeOffloading

DM for two platforms: the Nexus 7 tablet and the Galaxy S smartphone. Figure 2.7 shows the latencies

for running each application locally on the device (shown as Base), o�oaded to the cloud over

WiFi, and o�oaded over 3G. ¿e o�oading trade-o�s varied widely across the two platforms due

to di�erences in CPU speed, wireless, and cellular network card performance. For example, for the

55

Calculus application, cloud o�oading was better for the phone over both wireless and 3G; however,

for the tablet it was better only over wireless. For the Physics engine, o�oading was universally better,

but it was particularly signi�cant for the mobile device, which was not able to provide real-time

simulation without code o�oading.

¿ese cross-platform di�erences in performance show the importance of �exibility. An automated

algorithm cannot always predict when to o�oad and can be costly. ¿erefore, it is important for the

programmer to be able to easily change application deployment to adapt to new technologies.

0

100

200

300

400

500

BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G

m
illi
se
co
nd
s

Execution Network

RegressionCalculusSudoku OCRPhysics ChessAI

0

100

200

300

400

500

BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G

m
illi
se

co
nd

s

Phone
1190 ms

RegressionCalculusSudoku OCRPhysics ChessAI

Tablet

Figure 2.7: Code o�oading evaluation.

Scalability.We built the LoadBalancedFrontEnd DM to scale a stateless SO under heavy load.

¿e DM creates a given number of non-consistent replicas of an SO and assigns clients to the replicas

in a round-robin fashion. Figure 2.8 shows the throughput of the SO serving null RPCs when the

DM creates up to 3 replicas. ¿roughput scaled linearly with the number of replicas until 257,365

requests/second, at which point the 1Gb network was saturated.

Peer-to-Peer Deployments. Sapphire lets programmers move objects easily between clients and

56

0K

50K

100K

150K

200K

250K

300K

 0 20 40 60 80 100 120 140

R
eq

ue
st

s/
s

Clients

1 node
2 nodes
3 nodes

Figure 2.8: DM evaluation.¿roughput using the LoadBalancedFrontEnd DM.

servers, enabling P2P deployments that would be di�cult or impossible in existing systems. We

measured three deployments for the Game SO from our multi-player game: (1) without a DM, which

caused Sapphire to deploy the SO on the server where it is created; (2) with the KeepOnDevice

DM, which dynamically moved the Game object to a device that accessed it; and (3) with the

ConsensusRSM-P2P DM, which created synchronized replicas of the Game SO and placed them on

the callers’ devices.

For eachdeployment,Figure 2.9 shows the latency of the game’s readmethods (getScrambleLetters(),

getPlayerTurn() and getLastRoundStats()) and write methods (play() and pass()). With

theGame SO in the cloud, read andwrite latencies were high for both players.With theKeepOnDevice

DM, the read and write latencies were extremely low for the device hosting the SO, but somewhat

higher for the other player, compared to the cloud version. Finally, with the ConsensusRSM-P2PDM,

read latencies were much lower for both devices, while write latencies were higher. In our scenario,

the two tablets and the server were on the same network. In cases where the two players are close on

the network and far from the server, the peer-to-peer DMs would provide a valuable deployment

option.

With the DMs, no cloud servers were needed to support the Game SO; this reduced server load,

but Game SOs were no longer available if the hosting device were disconnected. ¿is experiment

57

shows the impact of di�erent deployment options and the bene�t of being able to �exibly choose

alternative deployments to trade o� application performance, availability, and server load.

0

5

10

15

20

Host Guest Host Guest Host Guest

m
ilis

ec
on

ds

getPlayerTurn getScrambleLetters getLastRoundStats pass play

29 26

No DM KeepOnDevice DM

30 6228

ConsensusRSM-P2P DM

Figure 2.9:Multi-player Game with di�erent DMs. Performance is measured in latency to make each

application-level call.

2.8 Related Work

Researchers have built many systems to help applications cope with deployment issues. Code-

o�oading systems, like COMET [85],MAUI [52], and CloneCloud [42], automatically o�oad compu-

tationally intensive tasks frommobile devices to cloud servers. Distributed storage systems [56, 40, 48]

are a popular solution for server-side scalability, durability and fault-tolerance. Systems like PADS [27],

PRACTI [26] and WheelFS [196] explored con�gurable deployment of application data but not

run-time management of the entire application. Systems like Bayou [199], Cimbiosys [169] and

Simba [6] o�er client-side caching and o�ine access for weakly connected environments. Each of

these systems only solves a subset of the deployment challenges that mobile/cloud applications face.

Sapphire is the �rst distributed system to provide a uni�ed solution to deployment for mobile/cloud

applications.

When building Sapphire’s DM library, we drew inspiration from existing mobile/cloud deploy-

58

ment systems, including those providing: wide-area communication [107], load-balancing [88, 219],

geographic replication [131, 188], consensus protocols [119, 156], and DHTs [193, 175, 138].

Similar to our goal with Sapphire, previous language and compiler systems have tried to unify

the distributed environment. However, unlike Sapphire, these solutions have no �exibility. ¿ey

either make all deployment decisions for the application – an approach that doesn’t work for the wide

range of mobile/cloud requirements – or they leave all deployment up to the programmer. Compilers

like Coign [97], Links [47], Swi [41] and Hop [181] automatically partition applications, but give

programmers no control over performance trade-o�s. Single language domains like Node.js [155] and

Google Web Toolkit [84] create a uniform programming language across browsers and servers, but

leave deployment up to the application. For mobile devices, MobileHTML5 [143], MobiRuby [144]

and Corona [49] support a single cross-platform language. Sapphire supports a more complete cross-

platform environment, but programmers can select deployments from an extensive (and extensible)

library.

¿e DK’s single address space and distributed object model are related to early distributed

programming systems such as Argus [129], Amoeba [198] and Emerald [108]. Modern systems like

Orleans [36] and Tango [23] provide cloud- or server-side services. Fabric [130] extends the work in

this space with language abstractions that provide security guarantees. ¿ese systems were intended

for homogeneous, local-area networks, so do not have the customizability and extensibility of the

Sapphire DK.

Overall, existing or early distributed programming systems are not general-purpose, �exible or

extensible enough to support the requirements of modern mobile/cloud applications. ¿erefore, in

designing Sapphire, we drew inspiration fromwork that has explored customizability and extensibility

in other contexts: operating systems [64, 30, 71, 180, 124], distributed storage [27, 53, 196, 183, 73],

databases [38, 25], and routers and switches [112, 139].

2.9 Summary

¿is chapter presented Sapphire, a system that automatically manages distributed computation for

mobile/cloud applications. Sapphire’sDeploymentKernel creates an integrated run-time environment

59

with location-independent communication across mobile devices and the cloud. Its novel deployment

layer contains a library of Deployment Managers that handle application-speci�c distribution issues,

such as load-scaling, replication, and performance caching. Our experience shows that Sapphire: (1)

greatly eases the programming of heterogeneous, distributed cloud/mobile applications, (2) provides

great �exibility in choosing and changing deployment decisions, and (3) gives programmers �ne-

grained control over performance, availability, and scalability.

60

3 | Diamond

As listed in Section 1.4, the another key operating system function is memory management. In

contrast to desktop applications, memory management in a mobile/cloud application is especially

challenging because mobile/cloud applications are reactive [106]: giving the illusion of continuous

synchronization across users’ devices without requiring them to explicitly save, reload, and exchange

shared data. ¿is trend towards reactive applications is not limited to mobile/cloud applications, but

also includes the latest distributed versions of traditional desktop apps on both Windows [37] and

OSX [8].

Combined with the other new mobile/cloud requirements listed in Section 1.3, o�ering reac-

tivity presents a challenging distributed memory management problem for application program-

mers. mobile/cloud applications consist of widely distributed processes sharing data across mobile

devices, desktops, and cloud servers. ¿ese processes make concurrent data updates, can stop or

fail at any time, and may be connected by slow or unreliable links. While distributed storage sys-

tems [48, 199, 40, 62, 56] provide persistence and availability, programmers still face the formidable

challenge of synchronizing updates between application processes and distributed storage in a fault-

tolerant manner.

¿is chapter presents Diamond, the �rst reactive data management service (RDS) for wide-area

applications that continuously synchronizes shared application data across distributed processes.

Speci�cally, Diamond performs the following functions on behalf of an application: (1) it ensures

that updates to shared data are consistent and durable, (2) it reliably coordinates and synchronizes

shared data updates across processes, and (3) it automatically triggers reactive code when shared data

61

changes so that processes can perform appropriate tasks. For example, when a user updates data on

one device (e.g., a move in a multi-player game), Diamond persists the update, reliably propagates it

to other users’ devices, and transparently triggers application code on those devices to react to the

changes.

Reactive data management in the wide-area context requires a balanced consideration of perfor-

mance trade-o�s and reasoning about complex correctness requirements in the face of concurrency.

Diamond implements the di�cult mechanisms required by these applications (such as logging and

concurrency control), letting programmers focus on high-level data-sharing requirements (e.g.,

atomicity, concurrency, and data layout). Diamond introduces three new concepts:

1. Reactive DataMap (rmap), a primitive that lets applications create reactive data types – shared,

persistent data structures – and map them into the Diamond data management service so it

can automatically synchronize them across distributed processes and persistent storage.

2. Reactive Transactions, an interactive transaction type that automatically re-executes in re-

sponse to shared data updates. ¿ese “live” transactions run application code to make local,

application-speci�c updates (e.g., UI changes).

3. Data-type Optimistic Concurrency Control (Docc), a mechanism that leverages data-type

semantics to concurrently commit transactions executing commutative operations (e.g., writes

to di�erent list elements, increments to a counter). Our experiments show that Docc copes

with wide-area latencies very e�ectively, reducing abort rates by up to 5x.

We designed and implemented a Diamond prototype in C++ with language bindings for C++,

Python, and Java on both x86 and Android platforms. We evaluate Diamond by building and measur-

ing both Diamond and custom versions (using explicit data management) of four reactive apps. Our

experiments show that Diamond signi�cantly reduces the complexity and size of reactive applications,

provides strong transactional guarantees that eliminate data races, and supports automatic reactivity

with performance close to that of custom-written reactive apps.

62

3.1 Background

Reactive applications require synchronized access to distributed shared data, similar to shared virtual

memory systems [125, 28]. For practical performance in the wide-area environment, apps must be

able to control: (1) what data in each process is shared, (2) how o en it is synchronized, and (3)

when concurrency control is needed. Existing applications use one of several approaches to achieve

synchronization with control. ¿is section demonstrates that these approaches are all complex,

error-prone, and make it di�cult to reason about application data consistency.

As an example, we analyze a simple social game based on the 100 game [1]. Such games are played

by millions [202], and their popularity changes constantly; therefore, game developers want to build

them quickly and focus on game logic rather than data management. Because game play increasingly

uses real money (almost $2 billion last year [63]), their design parallels other reactive applications

where correctness is crucial (e.g., apps for �rst responders [145] and payment apps [210, 191]).

In the 100 game, players alternately add a number between 1 and 10 to the current sum, and

the �rst to reach 100 wins. Players make moves and can join or leave the game at di�erent times;

application processes can fail at any time. ¿us, for safety, the game must maintain traditional ACID

guarantees – atomicity, consistency, isolation and durability – as well as reactivity for data updates. We

call this combination of properties ACID+R. While a storage system provides ACID guarantees for

its own data, those guarantees do not extend to application processes. In particular, pushing updates to

storage on mobile devices is insu�cient for reactivity because application processes must re-compute

local data derived from shared data to make changes visible to users and other components.

3.1.1 Roll-your-own Data Management

Many current reactive apps “roll-their-own” application-speci�c synchronization across distributed

processes on top of general-purpose distributed storage (e.g., Spanner [48], Dropbox [62]. Figure 3.1

shows a typical three-tiered architecture used by these apps (e.g., PlayFish uses it to serve over 50

million users/month [92]). Processes on client devices access stateless cloud servers, which store per-

sistent game state in a distributed storage system and use a reliable noti�cation service (e.g.,¿ial� [4])

63

Client Device

Clo
ud

players

curplay

myturn?

turn

sum

2

10

[Alice,Bob]

false

Alice

myname Bob

9

10

Distributed Storage
players

turn

[Alice,Bob]

2

10sum

Cloud ServerCloud ServerPut(tur
n,3)

Put(sum
,15)

N
o
t
i
f
y
(
B
o
b
)Get

(tu
rn)

Sum: 10
Your turn:

Get
(su

m)

Sum: 10
Your turn: 5

Notify(Bob)

M
o
v
e
(
5
)

G
e
t
M
o
v
e
(
)

Client Device

players

curplay

2

10

[Alice,Bob]

myturn? true

Alice

turn

sum

myname Alice

1

2

7

 Notification Service
notifications=[]

5
6

3

4

8

Figure 3.1: Example 100 game architecture. Each box is a separate address space. players, turn and sum

are shared across address spaces and the storage system; myturn? and curplay are derived from shared

data. When shared values change, the app manually updates distributed storage, other processes with

the shared data, and any data in those processes derived from shared data, as shown by the numbered

steps needed to propagate Alice’s move to Bob.

to trigger changes in other processes for reactivity. While all application processes can fail, we assume

strong guarantees – such as durability and linearizability – for the storage system and noti�cation

service. Although such apps could rely on a single server to run the game, this would create a central-

ized failure point. Clients cache game data to give users a responsive experience and to reduce load

on the cloud servers [92].

¿e numbers in Figure 3.1 show the data management steps that the application must explicitly

perform for Alice’s move (adding 5 to the sum). Alice’s client: (1) updates turn and sum locally, (2)

calculates new values for myturn? and curplay, and (3) sends the move to a cloud server. ¿e server:

(4) writes turn and sum to distributed storage, and (5) sends a noti�cation to Bob. ¿e noti�cation

service: (6) delivers the noti�cation to Bob’s client, which (7) contacts a cloud server to get the latest

move. ¿e server: (8) reads from distributed storage and returns the latest turn and sum. Bob’s client:

(9) updates turn and sum locally, and (10) re-calculates myturn? and curplay.

64

Note that such data management must be customized to such games, making it di�cult to

implement a general-purpose solution. For example, only the application knows that: (1) clients share

turn and sum (but not myname), (2) it needs to synchronize turn and sum a er each turn (but not

players), and (3) it does not need concurrency control because turn already coordinates moves.

Correctly managing this application data demands that the programmer reason about failures

and data races at every step. For example, the cloud server could fail in the middle of step 4, violating

atomicity. It could also fail between steps 4 and 5, making the application appear as if it is no longer

reactive.

A new player, Charlie, could join the game while Bob makes his move, leading to a race; if Alice

receives Bob’s noti�cation �rst, but Charlie writes to storage �rst, then both Alice and Charlie would

think that it was their turn, violating isolation.

Finally, even if the programmer were to correctly handle every failure and data race and write

bug-free code, reasoning about the consistency of application data would prove di�cult. Enforcing

a single global ordering of join, leave and move operations requires application processes to either

forgo caching shared data (or data derived from shared data) altogether or invalidate all cached copies

and update the storage system atomically on every operation. ¿e �rst option is not realistic in a

wide-area environment, while the second is not possible when clients may be unreachable.

3.1.2 Wide-area Storage Systems

A simple, alternative way to manage data manually is to store shared application data in a wide-area

storage system (e.g., Dropbox [62]). ¿at is, rather than calling move in step 3, the application stores

and updates turn and sum in a wide-area storage system. ¿ough simple, this design can be very

expensive. Distributed �le systems are not designed to frequently synchronize small pieces of data,

so their coarse granularity can lead to moving more data than necessary and false sharing.

Further, while this solution synchronizes Alice’s updates with the cloud, it does not ensure that

Bob receives Alice’s updates. To simulate reactive behavior and ensure that Bob sees Alice’s updates,

Alice must still use a wide-area noti�cation system (e.g., Apple Push Noti�cations [15]) to notify

Bob’s client a er her update. Unfortunately, this introduces a race condition: if Bob’s client receives

65

the noti�cation before the wide-area storage system synchronizes Alice’s update, then Bob will not

see Alice’s changes. Worse, Bob will never check the storage system again, so he will never see Alice’s

update, leaving him unable to make progress. ¿us, this solution retains all of the race conditions

described in Section 3.1.1 and introduces some new ones.

3.1.3 Reactive Programming Frameworks

Several programming frameworks (e.g., Firebase [69], Parse [160] with React [170], Meteor [141])

have recently been commercially developed for reactive applications. ¿ese frameworks combine

storage and noti�cation systems and automate data management and synchronization across systems.

However, they do not provide a clear consistency model, making it di�cult for programmers to

reason about the guarantees provided by their synchronization mechanisms. Further, they o�er no

distributed concurrency control, leaving application programmers to contend with race conditions;

for example, they can lead to the race condition described in Section 3.1.1.

3.2 Architecture & Programming Model

Diamond is a new programming platform designed to simplify the development of wide-area reactive

applications. ¿is section speci�es its data and transaction models and system call API.

3.2.1 System Model

Diamond applications consist of processes running on mobile devices and cloud servers. Processes

can communicate through Diamond or over a network, which can vary from local IPC to the Internet.

Every application process is linked to a client-side library, called LibDiamond, which provides access

to the shared Diamond cloud – a highly available, fault-tolerant, durable storage system. Diamond

subsumes some applications’ server-side functionality, but our goal is not to eliminate such code. We

expect cloud servers to continue providing reliable and e�cient access to computation and datacenter

services (e.g., data mining) while accessing shared data needed for these tasks through Diamond.

Figure 3.2 shows the 100 game datamodel usingDiamond. Compared to Figure 3.1, the application

66

Client Device

Di
am

on
d

players

curplay

myturn?

turn

sum

2

10

[Alice,Bob]

false

Alice

myname Bob

Sum: 10
Your turn:

Client Device

players

curplay

2

10

[Alice,Bob]

myturn? true

Alice

turn

sum

myname Alice

Sum: 10
Your turn: 5

libDiamond libDiamond

 Diamond Cloud Storage
players

turn

[Alice,Bob]

2

10sum

Figure 3.2: Diamond 100 game data model.¿e app rmaps players, turn and sum, updates them in

read-write transactions and computes myturn? and curplay in a reactive transaction.

can directly read and write to shared data in memory, and Diamond ensures updates are propagated

to cloud storage and other processes. Further, Diamond’s strong transactional guarantees eliminate

the need for programmers to reason about failures and concurrency.

3.2.2 Data Model

Diamond supports reactive data types for �ne-grained synchronization, e�cient concurrency control,

and persistence. As with popular data structure stores [55], such as Redis [173] and Riak [174], we

found that simple data types are general enough to support a wide range of applications and provide

the necessary semantics to enable commutativity and avoid false sharing. Table 3.1 lists the supported

persistent data types and their operations. In addition to primitive data types, like String, Diamond

supports simple Con�ict-free Replicated Data-types (CRDTs) [182] (e.g., Counter) and collection

types (e.g., LongSet) with e�cient type-speci�c interfaces. Using the most speci�c type possible

provides the best performance (e.g., using a Counter for records that are frequently incremented).

A single Diamond instance provides a set of tables; each table is a key-to-data-type map, where

each entry, or record, has a single persistent data type. Applications access Diamond through language

67

Table 3.1:Reactive data types (RDTs).Diamond’s RDTs include primitives, collections and con�ict-free

replicated data types.

Type Operations Description

Boolean Get(), Put(bool) Primitive boolean

Long Get(), Put(long) Primitive number

String Get(), Put(str) Primitive string

Counter Get(), Put(long)

Increment(long)

Decrement(long)

Long Counter

IDGen GetUID() Unique ID generator

LongSet Get(idx), Contains(long)

Insert(long)

Ordered number set

LongList Get(idx), Set(idx, long)

Append(long)

Number list

StringSet Get(idx), Contains(str)

Insert(str)

Ordered string set

StringList Get(idx), Set(idx, str)

Append(str)

String list

HashTable Get(key), Set(key, val) Unordered map

bindings; however, applications need not be written in a single language. We currently support C++,

Python and Java on both x86 and Android but could easily add support for other languages (e.g.,

Swi [14]).

68

3.2.3 System Calls

While apps interact with Diamond largely through reactive data types, we provide a minimal system

call interface, shown in Table 3.2, to support transactions and rmap.

¿e rmap Primitive

rmap is Diamond’s key abstraction for providing shared memory that is �exible, persistent, and

reactive across wide-area application processes. Applications call rmap with an application variable

and a key to the Diamond record, giving them control over what data in their address space is shared

and how it is organized. In this way, di�erent application processes (e.g., an iOS and an Android

client) and di�erent application versions (e.g., a new and current code release) can e�ectively share

data. When rmapping records to variables, the data types must match. Diamond’s system call library

checks at run time and returns an error from the rmap call if a mismatch occurs.

Transaction model

Application processes use Diamond transactions to read and write rmapped variables. Diamond

transactions are interactive [194], i.e., they let applications interleave application code with accesses

to reactive data types. We support both standard read-write transactions and new reactive transac-

tions. Applications cannot execute transactions across rmapped variables from di�erent tables, while

operations executed outside transactions are treated as single-op transactions.

Read-write transactions. Diamond’s read-write transactions let programmers safely and easily

access shared reactive data types despite failures and concurrency. Applications invoke read-write

transactions using execute_txn. ¿e application passes closures for both the transaction and a

completion callback. Within the transaction closure, the application can read or write rmapped

variables and variables in the closure, but it cannot modify program variables outside the closure.¿is

limitation ensures: (1) the transaction can access all needed variables when it executes asynchronously

(and they have not changed), and (2) the application is not a�ected by the side e�ects of aborted

69

Table 3.2:Diamond system calls.Applications use this interface to access tables, rmap and transactions.

System call Description

create(table, [isolation]) Create table

status = rmap(var, table, key) Bind var to key

id = execute_txn(func, cb) Start read-write transaction

id = register_reactxn(func) Start reactive transaction

reactxn_stop(txn_id) Stop re-executing

commit_txn(), abort_txn() Commit/Abort and exit

transactions. Writes to rmapped variables are bu�ered locally until commit, while reads go to the

client-side cache or to cloud storage.

Before execute_txn returns, Diamond logs the transaction, with its read and write sets, to persis-

tent storage. ¿is step guarantees that the transaction will eventually execute and that the completion

callback will eventually execute even if the client crashes and restarts. ¿is guarantee lets applications

bu�er transactions if the network is unavailable and easily implement custom retry functionality in

the completion callback. If the callback reports that the transaction successfully committed, then

Diamond guarantees ACID+R semantics for all accesses to rmapped records; we discuss these in more

detail in Section 3.2.4. On abort, Diamond rolls back all local modi�cations to rmapped variables.

Reactive transactions. Reactive transactions help application processes automatically propagate

changes made to reactive data types. Each time a read-write transaction modi�es an rmapped vari-

able in a reactive transaction’s read set, the reactive transaction re-executes, propagating changes to

derived local variables. As a result, reactive transactions provide a “live” view that gives the illusion

of reactivity while maintaining an imperative programming style comfortable to application pro-

grammers. Further, because they read a consistent snapshot of rmapped data, reactive transactions

avoid application-level bugs common to reactive programming models [135].

70

Applications do not explicitly invoke reactive transactions; instead, they register them by passing

a closure to register_reactxn, which returns a txn_id that can be used to unregister the transaction

with reactxn_stop. Within the reactive transaction closure, the application can read but not write

rmapped records, preventing potential data �ow cycles. Since reactive transactions are designed to

propagate changes to local variables, the application can read and write to local variables at any

time and trigger side-e�ects (i.e., print-outs, updating the UI). Diamond guarantees that reactive

transactions never abort because it commits read-only transactions locally at the client. Section 3.3

details the protocol for reactive transactions.

Reactive transactions run in a background thread, concurrently with application threads. Dia-

mond transactions do not protect accesses to local variables, so the programmer must synchronize

with locks or other mechanisms. ¿e read set of a reactive transaction can change on every execution;

Diamond tracks the read set from the latest execution. Section 3.5.2 explains how to use reactive

transactions to build general-purpose, reactive UI elements.

3.2.4 Reactive Data Management Guarantees

Diamond’s guarantees were designed to meet the requirements of reactive applications speci�ed in

Section 3.1, eliminating the need for each application to implement its own complex datamanagement.

To do so, Diamond enforces ACID+R guarantees for reactive data types:

• Atomicity: All or no updates to shared records in a read-write transaction succeed.

• Consistency: Accesses in all transactions re�ect a consistent view of shared records.1

• Isolation: Accesses in all transactions re�ect a global ordering of committed read-write trans-

actions.

• Durability: Updates to shared records in committed read-write transactions are never lost.

1¿e C in ACID is not well de�ned outside a database context. Diamond simply guarantees that each transaction
reads a consistent snapshot.

71

Table 3.3: Diamond’s isolation levels. Isolation levels for read-write transactions and associated ones

for reactive transactions.

Read-write Isolation Level Reactive Isolation Level

Strict Serializability

Snapshot Isolation

Read Committed

Stronger
Guarantees

Fewer
Aborts

Serializable Snapshot

Serializable Snapshot

Read Committed

• Reactivity: Accesses to modi�ed records in registered reactive transactions will eventually

re-execute.

¿ese guarantees create a producer-consumer relationship: Diamond’s read-write transactions produce

updates to reactive data types, while reactive transactions consume those updates and propagate

them to locally derived data. However, unlike the traditional producer-consumer paradigm, this

mechanism is transparent to applications because the ACID+R guarantees ensure that Diamond

automatically re-executes the appropriate reactive transactions when read-write transactions commit.

Table 3.3 lists Diamond’s isolation levels, which can be set per table. Diamond’s default is strict

serializability because it eliminates the need for application programmers to deal with inconsistencies

caused by data races and failures. Lowering the isolation level leads to fewer aborts and more con-

currency; however, more anomalies arise, so applications should either expect few con�icts, require

o�ine access, or tolerate inaccuracy (e.g., Twitter’s most popular hash tag statistics). Section 3.4.1

describes how Docc increases concurrency and reduces aborts for transactions even at the highest

isolation levels.

3.2.5 A Simple Code Example

To demonstrate the power of Diamond to simplify reactive applications, Figure 3.3 shows code to

implement the 100 game from Section 3.1 in Diamond. ¿is implementation provides persistence,

72

1 i n t main(i n t argc , cha r **argv) {
2 DS t r i n g S e t players; DCounter sum , turn;
3 s t r i n g myname = s t r i n g (argv [1]);
4
5 / / Map game s t a t e
6 create("100 game", STRICT_SERIALIZABLE);
7 rmap(players , "100 game", "players");
8 rmap(sum , "100 game", "sum");
9 rmap(turn , "100 game", "turn");

10
11 / / G en e r a l − p u r p o s e c a l l b a c k , e x i t i f t x n f a i l e d
12 auto cb = [] (txn_func_t txn , i n t status) {
13 i f (status == REPLY_FAIL) exit (1); };
14
15 / / Add u s e r t o t h e game
16 execute_txn ([myname] () {
17 players.Insert(myname); }, cb);
18
19 / / S e t up ou r p r i n t o u t s
20 register_reactxn ([myname] () {
21 s t r i n g curplay =
22 players[turn % players.size ()];
23 boo l myturn = myname == curplay;
24 cout << "Sum: " << sum << "\n";
25 i f (sum >= 100)
26 cout << curplay << " won!";
27 e l s e i f (myturn)
28 cout << "Your turn: ";
29 });
30
31 / / C y c l e on u s e r i n p u t
32 wh i l e (1) {
33 i n t inc; cin >> inc;
34 execute_txn ([myname , inc] () {
35 boo l myturn =
36 myname == players[turn % players.size ()];
37 / / c h e c k i n p u t s
38 i f (! myturn || inc < 1 || inc > 10) {
39 abort_txn (); r e t u r n ;
40 }
41 sum += inc; i f (sum < 100) turn ++;
42 }, cb);
43 }
44 r e t u r n 0;
45 }

Figure 3.3: Diamond code example. Implementation of the 100 game using Diamond. Omitting
includes, set up, and error handling, this code implements a working, C++ version of the 100 game [1].
DStringSet, DLong and DCounter are reactive data types provided by the Diamond C++ library.

73

atomicity, isolation and reactivity for every join and move operation in only 34 lines of code. We

use three reactive data types for shared game data, declared on line 2 and rmapped in lines 7-9. It is

important to ensure a strict ordering of updates, so we create a table in strict serializable mode on line

6. On line 12, we de�ne a general-purpose transaction callback for potential transaction failures. On

line 16, we execute a read-write transaction to add the player to the game, passing myname by value

into the transaction closure. Using Docc allows Diamond to commit two concurrent executions of

this transaction while guaranteeing strict serializability.

Line 20 registers a reactive transaction to print out the score and current turn. Diamond’s ACID+R

guarantees ensure that the transaction re-executes if players, turn or sum change, so the user always

has a consistent, up-to-date view. Note that we can print to stdout because the reactive transaction

will not abort, and the printouts re�ect a serializable snapshot, avoiding reactive glitches [135]. On

line 32, we wait for user input in the while loop and use a read-write transaction to commit the

entered move.

Diamond’s strong guarantees eliminate the need for programmers to reason about data races or

failures. Taking our examples from Section 3.1, Diamond ensures that when the game commits Alice’s

move, the move is never lost and Bob eventually sees it. Diamond also ensures that, if Charlie joins

before Bob makes his move, Alice either sees Charlie join without Bob’s move, or both, but never sees

Bob’s move without seeing Charlie join. As a result, programmers no longer need to reason about

race conditions, greatly simplifying the game’s design. To our knowledge, no other system provides

all of Diamond’s ACID+R properties.

3.2.6 O�ine Support

Wi-Fi and cellular data networks have become widely available, and reactive applications typically

have limited o�ine functionality; thus, Diamond focuses on providing online reactivity, unlike

storage systems (e.g., Bayou [199] and Simba [161]). However, Diamond still provides limited o�ine

support. If the network is unavailable, execute_txn logs and transparently retries, while Diamond’s

CRDTs make it more likely that transactions commit a er being retried. For applications with higher

contention, Diamond’s read committed mode enables commits locally at the client while o�ine, and

74

Diamond front-end servers

store

get
prepare
commit

register notify

publishsubscribe

App Client
libDiamond

App Server
libDiamond

App Client
libDiamond

store store store

Figure 3.4: Diamond architecture. Distributed processes share a single instance of the Diamond

storage system.

any modi�cations eventually converge to a consistent state for Diamond’s CRDTs.

3.2.7 Security

Similar to existing client-focused services, like Firebase [69] and Dropbox [62], Diamond trusts

application clients not to be malicious. Application clients authenticate with the Diamond cloud

through their LibDiamond client before they can rmap or access reactive data types. Diamond supports

isolation between users through access control lists (ACLs); applications can set rmap, read, and write

permissions per table. Within tables, keys function as capabilities; a client with a key to a record has

permission to access it. Applications can defend against potentially malicious clients by implementing

server-side security checks using reactive transactions on a secure cloud server.

3.3 System Design

¿is section relates Diamond’s architecture, the design of rmap, and its transaction protocols.

75

3.3.1 Data Management Architecture

Figure 3.4 presents an overview of Diamond’s key components. Each LibDiamond client provides

client-side caching and access to cloud storage for the application process. It also registers, tracks

and re-executes reactive transactions and keeps a persistent transaction log to handle device and

network failures.

¿e Diamond cloud consists of front-end servers and back-end storage servers, which together

provide durable storage and reliable noti�cations for reactive transactions. Front-end servers are

scalable, stateless nodes that provide LibDiamond clients access to Diamond’s back-end storage,

which is partitioned for scalability and replicated (using Viewstamped Replication (VR) [156]) for

fault tolerance. LibDiamond clients could directly access back-end storage, but front-end servers give

clients a single connection point to the Diamond cloud, avoiding the need for them to authenticate

with many back-end servers or track the partitioning scheme.

3.3.2 rmap and Language Bindings

Diamond language bindings implement the library of reactive data types for apps to use as rmap

variables. Diamond interposes on every operation to an rmapped variable. During a transaction, Lib-

Diamond collects an operation set for Docc to later check for con�icts. Readsmay hit the LibDiamond

client-side cache or require a wide-area access to the Diamond cloud, while writes (and increments,

appends, etc.) are bu�ered in the cache until commit.

3.3.3 Transaction Coordination Overview

Figure 3.5 shows the coordination needed across LibDiamond clients, front-end servers and back-end

storage for both read-write and reactive transactions. ¿is section brie�y describes the transaction

protocols.

Diamond uses timestamp ordering to enforce isolation across LibDiamond clients and back-

end storage; it assigns every read-write transaction a unique commit timestamp that is provided

by a replicated timestamp service (tss) (not shown in Figure 3.4). Commit timestamps re�ect the

76

transaction commit order, e.g., in strict serializability mode, they re�ect a single linearizable ordering

of committed, read-write transactions. Both Diamond’s client-side cache and back-end storage are

multi-versioned using these commit timestamps.

Running Distributed Transactions

Read-write and reactive transactions execute similarly; however, as Section 3.4 relates, reactive

transactions can commit locally and o en avoid wide-area accesses altogether. We lack the space to

cover Diamond’s transaction protocol in depth; however, it is similar to Spanner’s [48] with two key

di�erences: (1) Diamond uses Docc for concurrency control rather than a locking mechanism, and

(2) Diamond uses commit timestamps from the timestamp service (tss) rather than TrueTime [48].

Alice libDiamond Front-end Back-end

read(a)

<1,[11,13)>

gettimestamp

Front-end libDiamond Bob

write(b,1)

commit prepare

validation

okok
commit

pub
(b,1,16) notify

(b,1,16) re-exec
read(b)

register

read(b,14)

<0,[11,15)>
reg(14,[b])sub

(b,14)e
x

e
c

u
t
e

c
o

m
m

it

callback

Read-Write Transaction Reactive Transaction

R
e

g
is

t
e

r
N

o
t
if

y

Figure 3.5:Diamond transaction coordination. Le : Alice executes a read-write transaction that reads

A and writes B. Right: Bob registers a reactive transaction that reads B (we omit the txn_id). When

Alice commits her transaction, the back-end server publishes the update to the front-end, which

pushes the noti�cation and the update to Bob’s LibDiamond, which can then re-execute the reactive

transaction locally.

As shown in Figure 3.5 (le), transactions progress through two phases, execution and commit.

During the execution phase, LibDiamond runs the application code in the transaction closure passed

77

into txn_execute. It runs the code locally on the LibDiamond client node (i.e., not on a storage node

like a stored procedure).

¿e execution phase completes when the application exits the transaction closure or calls

txn_commit explicitly. Reactive transactions commit locally; for read-write transactions, LibDi-

amond sends the operation sets to the front-end server, which acts as the coordinator for a two-phase

commit (2PC) protocol, as follows:

1. It sends Prepare to all participants (i.e., partitions of the Diamond back-end that hold records

in the operation sets), which replicate it via VR.

2. Each participant runs a Docc validation check (described in Section 3.4); if Docc validation

succeeds, the participant adds the transaction to a prepared list and returns true; otherwise, it

returns false.

3. As an optimization, the front-end server concurrently retrieves a commit timestamp from the

tss.

4. If all participants respond true, the front-end sends Commits to the participants with the

commit timestamp; otherwise, it sends Aborts. ¿en, it returns the transaction outcome to the

LibDiamond client.

When the client receives the response, it logs the transaction outcome and invokes the transaction

callback.

Managing Reactive Transactions

As shown in Figure 3.5 (right), when an application registers a reactive transaction, the LibDiamond

client: (1) gives the reactive transaction a txn_id, (2) executes the reactive transaction at its latest

known timestamp, and (3) sends the txn_id, the timestamp, and the read set in a Register request

to the front-end server. For each key in the read set, the front-end server creates a Subscribe request

and sends those requests, along with the timestamp, to each key’s back-end partition.

78

For e�ciency, LibDiamond tracks read set changes between executions and re-registers. We expect

each reactive transaction’s read set to change infrequently, reducing the overhead of registrations; if

it changes o en, we can use other techniques (e.g., map_objectrange described in Section 3.5.2) to

improve performance.

When read-write transactions commit, Diamond executes the following steps for each updated

record:

1. ¿e leader in the partition sends a Publish request with the transaction’s commit timestamp

to each front-end subscribed to the updated record.

2. For each Publish, the front-end server looks up the reactive transactions that have the updated

record in their read sets and checks if the commit timestamp is bigger than the last noti�cation

sent to that client.

3. If so, the front-end server sends a Notify request to the client with the commit timestamp and

the reactive transaction id.

4. ¿e client logs the noti�cation on receipt, updates its latest known timestamp, and re-executes

the reactive transaction at the commit timestamp.

For keys that are updated frequently, back- and front-end servers batch updates. Application clients

can bound the batching latency (e.g., to 5 seconds), ensuring that reactive transactions refresh at least

once per batching latency when clients are connected.

Handling Failures

While both the back-end storage and tss are replicated using VR, Diamond can su�er failures of

the LibDiamond clients or front-end servers. On client failure, LibDiamond runs a client recovery

protocol using its transaction log to ensure that read-write transactions eventually commit. For each

completed but unprocessed transaction (i.e., in the log but with no outcome), LibDiamond retries

the commit. If the cloud store has a record of the transaction, it returns the outcome; otherwise, it

79

re-runs 2PC. For each reactive transaction, the application re-registers on recovery. LibDiamond uses

its log to �nd the last timestamp at which it ran the transaction.

Although front-end servers are stateless, LibDiamond clients must set up a new front-end server

connection when they fail. ¿ey use the client recovery protocol to do this and re-register each

reactive transaction with its latest noti�cation timestamp. Front-end servers also act as coordinators

for 2PC, so back-end storage servers use the cooperative termination protocol [29] if they do not

receive Commit requests a er some timeout.

3.4 Wide-area Optimizations

¿is section discusses Diamond’s optimizations to reduce wide-area overhead.

3.4.1 Data-type Optimistic Concurrency Control

Diamond uses an optimistic concurrency control (OCC) mechanism to avoid locking across wide-

area clients. Unfortunately, OCC can perform poorly across the wide area due to the higher latency

between a transaction’s read of a record and its subsequent commit. ¿is raises the likelihood that

a concurrent write will invalidate the read, thereby causing a transaction abort. For example, to

increment a counter, the transaction reads the current value, increments it, and then commits the

updated value; if another transaction attempts the same operation at the same time, an abort occurs.

Docc tackles this issue in two ways. First, it uses �ne-grained concurrency control based on the

semantics of reactive data types, e.g., allowing concurrent updates to di�erent list elements. Second,

it uses con�ict-free data types with commutative operations, such as counters and ordered sets. As

noted in Section 3.3.3, LibDiamond collects an operation set for every data type operation during the

transaction’s execution phase. For each operation, it collects the key and table. It also collects the

read version for every Get, the written value for every Put, the index (e.g., list index or hash table

key) for every collection operation, and the di� (e.g., the increment value or the insert or append

element) for every commutative CRDT operation. We show in Section 3.5 that although �ne-grained

tracking slightly increases Docc overhead, it improves overall performance.

80

Using operation sets, Docc runs a validation procedure that checks every committing transaction

for potential violations of isolation guarantees. A con�icting access occurs for an operation if the

table, key, and index (for collection types) match an operation in a prepared transaction. For a read, a

con�ict also occurs if the latest write version (or commutative CRDT operation) to the table, key, and

index is bigger than the read version. For each, Docc makes an abort decision, as noted in Table 3.4.

Table 3.4: Docc validation matrix.Matrix shows whether the committing transaction can commit

(C) or must abort (A) on con�icts. Each column is further divided by the isolation level (RC=read

committed, SI=snapshot isolation, SS=strict serializability). Commutative CRDT operations have

the same outcome.

read
write

C

read
RC SI SS

write
RC SI SS

CRDT op
RC SI SS

C C C C A C C A
C C A C A A C A A

CRDT op C C A C A A C C C

Prepared
Commiting

Op
Op

Isolation Level

Since transactions that contain only commutative operations can concurrently commit, Docc

can allow many concurrent transactions that modify the same keys. ¿is property is important for

workloads with high write contention, e.g., the Twitter “like” counter for popular celebrities [96].

Further, because Diamond runs read-only and reactive transactions in serializable snapshot mode,

they do not con�ict with read-write transactions with commutative CRDT operations.

3.4.2 Client Caching with Bounded Validity Intervals

Some clients in the wide-area setting may occasionally be unavailable, making it impossible to

atomically invalidate all cache entries on every write to enforce strong ordering. Diamond therefore

uses multi-versioning in both the client-side cache and back-end storage to enforce a global ordering

of transactions. To do this, it tags each version with a validity interval [166], which begins at the start

81

timestamp and is terminated by the end timestamp. In Diamond’s back-end storage, a version’s start

timestamp is the commit timestamp of the transaction that wrote the version. ¿e end timestamp

is either the commit timestamp of the transaction writing the next version (making that version

out-of-date) or unbounded for the latest version. Figure 3.6 shows an example of back-end storage

with three keys.

On reads, the Diamond cloud tags the returned value with a validity interval for the LibDiamond

client-side cache. ¿ese validity intervals are conservative; back-end storage guarantees that the

returned version is valid at least within the validity interval, although it may be valid beyond. If the

version is the latest, back-end storage will bound the validity interval by setting the end timestamp to

the latest commit timestamp of a transaction that accessed that record. For example, in Figure 3.6, the

validity interval of the latest version of B and C are capped at timestamp 16 in the cache, while they

are unbounded in storage. Most importantly, bounded validity intervals eliminate the need for cache

invalidations because the version is always valid within the validity interval. Diamond eventually

garbage collects cached versions as they become too outdated to use.

Diamond
Client
Cache

Diamond
Cloud
Storage

10

B

C

A

11 12 13 14 15 16

10

B

C

A

11 12 13 14 15 16

Figure 3.6: Diamond versioned cache. Every Diamond client has a cache of the versions of records

stored by the Diamond cloud storage system. ¿e bottom half shows versions for three keys (A, B

and C), and the top half shows cached versions of those same keys. Note that the cache is missing

some versions, and all of the validity intervals in the cache are bounded.

82

3.4.3 Data Push Noti�cations

Reactive transactions require many round-trips to synchronously fetch each update; these can be

expensive in a wide-area network. Fortunately, unlike stand-alone noti�cations services (e.g., ¿ial�),

Diamond has insight into what data the application is likely to access when the reactive transaction

re-executes. ¿us, Diamond uses data push noti�cations to batch updates along with noti�cations,

reducing wide-area round trips.

When front-end servers receive Publish requests from back-end storage, they perform a snapshot

read of every key in the reactive transaction’s last read set at the updating transaction’s commit

timestamp, then piggyback the results with the Notify request to the LibDiamond client. LibDiamond

re-executes the reactive transaction at the commit timestamp; therefore, if its read set has not changed,

then it requires no additional wide-area requests. Further, since the reads were done at the commit

timestamp,LibDiamond knows that the transaction can be serialized at that timestamp and committed

locally, eliminating all wide-area communication.

3.5 Experience & Evaluation

¿is section evaluates Diamond with respect to both programming ease and performance. Overall,

our results demonstrate that Diamond simpli�es the design of reactive applications, provides stronger

guarantees than existing custom solutions, and supports automated reactivity with low performance

overhead.

3.5.1 Prototype Implementation

We implemented a Diamond prototype in 11,795 lines of C++, including support for C++, Python

and Java language bindings on both x86 and ARM.¿e Java bindings (939 LoC) use javacpp [104],

and the Python bindings (115 LoC) use Boost [3]. We cross-compiled Diamond and its dependencies

for Android using the NDK standalone toolchain [77]. We implemented most Diamond data types,

but not all are supported by Docc. Our current prototype does not include client-side persistence

and relies on in-memory replication for the back-end store; however, we expect disk latency on SSDs

83

to have a low performance impact compared to wide-area network latency, with NVRAM reducing

storage latency even further in the future.

3.5.2 Programming Experience

¿is section evaluates our experience in building new Diamond apps, porting existing apps to

Diamond, and creating libraries to support the needs of reactive programs.

Simplifying Reactive Applications

To evaluate Diamond’s programming bene�ts, we implemented applications both with and without

Diamond. Table 3.5 shows the lines of code for both cases. For all of the apps,Diamond simultaneously

decreased program size and added important reliability or correctness properties. We brie�y describe

the programs and results below.

Table 3.5: Application comparison. Diamond both reduces code size and adds to the application’s

ACID+R guarantees.

Application
Lines of Code

w/o Diamond

Lines of Code

w/ Diamond
% Saved

Added Properties

A C I D R

100 Game 46 34 26% ✓ ✓ ✓
Chat Room 355 225 33% ✓ ✓ ✓ ✓
PyScrabble 8729 7603 13% ✓ ✓
Twitter clone 14278 12554 13% ✓ ✓ ✓

100 Game. Our non-Diamond version of the 100 game is based on the design in Figure 3.1. For

simplicity, we used Redis [173] for both storage and noti�cations. We found several data races between

storage updates and noti�cations when running experiments for Figure 3.9, forcing us to include

84

updates in the noti�cations to ensure clients did not read stale data from the store. ¿e Diamond

version eliminated these bugs and the complexities described in Section 1.4 andguaranteed correctness

with atomicity and isolation; in addition, it reduced the code size by 26%.

Chat Room. As another simple but representative example of a reactive app, we implemented two

versions of a chat room. Our version with explicit data management used Redis for storage and the

Jetty [105] web server to implement a REST [68] API. It used POST requests to send messages and

polled using GET requests for displaying the log.¿is design is similar to that used by Twitter [206, 94]

to manage its reactive data (e.g., Twitter has POST and GET requests for tweets, timelines, etc.). ¿e

Diamond version used a StringList for the chat log, a read-write transaction to append messages,

and a reactive transaction to display the log. In comparison, Diamond not only eliminated the need

for a server or storage system, it also provided atomicity (the Redis version has no failure guarantees),

isolation (the Redis version could not guarantee that all clients saw a consistent view of the chat log),

and reactivity (the Redis version polled for new messages). Diamond also shrunk the 355-line app by

130 lines, or 33%.

PyScrabble and Diamond Scrabble. To evaluate the impact of reactive data management in an

existing application, we built a Diamond version of PyScrabble [44], an open-source, multiplayer

Scrabble game.¿e original PyScrabble does not implement persistence (i.e., it has no storage system)

and uses a centralized server to process moves and notify players. ¿e centralized server enforces

isolation and consistency only if there are no failures. We made some changes to add persistence

and accommodate Diamond’s transaction model. We chose to directly rmap the Scrabble board

to reactive data types and update the UI in a reactive transaction, so our implementation had to

commit and share every update to make it visible to the user; thus, other users could see the player

lay down tiles in real-time rather than at the end of the move, as in the original design. Overall, our

port of PyScrabble to Diamond removed over 1000 lines of code from the 8700-line app (13%) while

transparently simplifying the structure (removing the server), adding fault tolerance (persistence)

and atomicity, and retaining strong isolation.

85

Twimight andDiamondDove. As another modern reactive application, we implemented a subset

of Twitter using an open-source Android Twitter client (Twimight [205]) and a custom back-end.¿e

Diamond version eliminated much of the data management in the Twimight version, i.e., pushing

and retrying updates to the server and maintaining consistency between a client-side SQLite [190]

cache and back-end storage. Diamond directly plugged into UI elements and published updates

with read-write transactions. As a result, it simpli�ed the design, eliminated 1700 lines (13%) from

the 14K-line application, transparently provided stronger atomicity and isolation guarantees, and

eliminated inconsistent behaviors (e.g., a user seeing a retweet before the original tweet).

Simplifying Reactive Libraries

In addition to simplifying the design and programming of reactive apps, we found that Diamond

facilitates the creation of general-purpose reactive libraries. As one example, Diamond transactions

naturally lend themselves tomanagingUI elements. For instance, a check box usually rmaps a Boolean,

re-draws a UI element in a reactive transaction, and writes to the Boolean in a read-write transaction

when the user checks/unchecks the box. We implemented a general library of Android UI elements,

including a text box and check box. Each element required under 50 lines of code yet provided strong

ACID+R guarantees. Note that these elements tie the user’s UI to shared data, making it impossible

to update the UI only locally; for example, if a user wants to preview a message before sharing it with

others, the app must update the UI in some other way.

For generality, Diamond makes no assumptions about an app’s data model, but we can build

libraries using rmap for common data models. For example, we implemented object-relational map-

ping for Java objects whose �elds were Diamond data types. Using Java re�ection, rmap_objectmaps

each Diamond data type inside an object to a key derived from a base key and the �eld’s name. We

also support rmap for subsets of Diamond collections, e.g., rmap_range for Diamond’s primitive list

types, which binds a subset of the list to an array, and rmap_objectrange, which maps a list of objects

using rmap_object.

¿ese library functions were easy to build (under 75 lines of code) and greatly simpli�ed several

applications; for example, our Diamond Twitter implementation stores a user’s timeline as a LongList

86

of tweet ids and uses map_objectrange to directly bind the tail of the user’s timeline into a custom

Android adapter, which then plugs into the Twimight Android client and automatically manages

reactivity. In addition to reducing application complexity, these abstractions also provide valuable

hints for prefetching and for how reactive transaction read sets might change. Overall, we found

Diamond’s programming model to be extremely �exible, powerful, and easy to generalize into widely

useful libraries.

3.5.3 Performance Evaluation

Our performance measurements demonstrate that Diamond’s automated data management and

strong consistency impose a low performance cost relative to custom-written applications. Using

transactions with strong isolation properties lowers throughput, as one would expect. We also show

that Diamond’s Docc improves performance of transactional guarantees, and that data push noti�-

cations reduce the latency of wide-area transactions. Finally, our experiments prove that Diamond

has low overhead on mobile devices and can recover quickly from failures.

Experimental Setup

We ran experiments on Google Compute Engine [80] using 16 front-end servers and 5 back-end

partitions, each with 3 replicas placed in di�erent availability zones in the same geographic region

(US-Central). Our replication protocol used adaptive batching with a batch size of 64. We placed

clients in a di�erent geographic region in the same country (US-East). ¿e latency between zones

was ≈1 ms, while the latency between regions was ≈36 ms. For our mobile device experiments, we
used Google Nexus 7 LRX22G tablets connected via Wi-Fi and, for desktop experiments, we used a

Dell workstation with an Intel Xeon E5-1650 CPU and 16 GB RAM.

We used a benchmark based on Retwis [122], a Redis-based Twitter clone previously used to

benchmark transactional storage systems [220]. ¿e benchmark was designed to be a representative,

although not realistic, re�ection of a Twitter-like workload that provides control over contention.

It ran a mix of �ve transactions that range from 4-21 operations, including: loading a user’s home

87

Strong Operation Ordering

Linearizable Txns
Strong Transaction Ordering

Figure 3.7: Peak throughput for explicit data management vs Diamond.We compare an implementa-

tion using Redis and Jetty to Diamond at di�erent isolation levels with and without Docc. We label

the ordering guarantees provided by each con�guration. In all cases, the back-end servers were the

bottleneck.

timeline (50%), posting a tweet (20%), following a user (5%), creating a new user (1%), and “like”-ing

a tweet (24%). To increase contention, we used 100K keys and a Zipf distribution with a co-e�cient

of 0.8.

Overhead of Automated Data Management

For comparison, we built an implementation of the Retwis benchmark that explicitly manages

reactive data using Jetty [105] and Redis [173]. ¿e Redis WAIT command o�ers synchronous in-

memory replication, which matches Diamond’s fault-tolerance guarantees but provides no operation

or transaction ordering [172]. ¿e le most bar in Figure 3.7 shows the peak Retwis throughput of 31K

trans./sec. for the Redis-based implementation, while the second bar in Figure 3.7 shows the Diamond

read-committed (RC) version, whose performance (30.5K trans./sec.) is nearly identical. Unlike the

Redis-based implementation, however, the Diamond benchmark provides strong consistency based

on VR, i.e., it enforces a single global order of operations but not transactions. ¿e Diamond version

also provides all of its reactivity support features. Diamond therefore provides better consistency

properties and simpli�es programming at little additional cost.

Aswe add stronger isolation through transactions, throughputdeclines because two-phase commit

88

requires each back-end server to process an extra message per transaction. As the graph shows,

snapshot isolation (SI) and strict serializability (SS) reduce throughput by nearly 50% from RC. ¿e

graph also shows SI and SS both with and without Docc; eliminating Docc hurts SS more than SI

(27% vs. 13%) because SI lets transactions with read-write con�icts commit (leading to write skew).

From this experiment, we conclude that Diamond’s general-purpose data management imposes

almost no throughput overhead. Also, achieving strong transactional isolation guarantees does

impose a cost due to the more complex message protocol required. Depending on the application,

programmers can choose to o�set the cost by allocating more servers or tolerate inconsistencies that

result from weaker transactional guarantees.

Bene�t of Docc

Docc’s bene�t depends on both contention and transaction duration. To evaluate this e�ect, we

measured the throughput improvement of Docc for each type of Retwis transaction with at least

one CRDT operation (Figure 3.8).

¿e add_user and like transactions are short and thus unlikely to abort, but they still see close to

a 2x improvement. add_follower gets a larger bene�t (4x) because it is a longer transaction withmore

commutative operations. Even get_timeline, a read-only transaction, gets a tiny improvement (2.5%)

due to reduced load on the servers from aborting transactions. Further, because get_timeline runs

in serializable snapshotmode, post_tweet transactions can commit concurrently with get_timeline

transactions.

¿e post_tweet transaction appends a user’s new tweet to his timeline and his followers’ home

timelines (each user has between 5 and 20 followers). If a user follows a large number of people that

tweet frequently, conventional OCC makes it highly likely that a con�icting Append would cause the

entire transaction to fail. With Docc, all Appends to a user’s home timeline can commute, avoiding

these aborts. As a result, we saw a 5x improvement in abort rate withDocc over conventional OCC for

post_tweet, leading to a 25x improvement in throughput. Overall, these results show that Diamond’s

support for data types in its API and concurrency control mechanism is crucial to reducing the cost

of transactional guarantees.

89

Th
ro

ug
hp

ut
Im

pr
ov

em
en

t

0X
1X
2X
3X
4X
5X

add_user add_follower post_tweet get_timeline like

2X
1X

25X
4X

2X

25x

Figure 3.8:¿roughput improvement with Docc for each Retwis transaction type.

La
ten

cy

0 s
0.25 s

0.5 s
0.75 s

1 s

No Data Push Data Push Redis

Figure 3.9: Latency comparison for 100 game rounds with data push noti�cations. Each round consist

of 1 move by each of 2 players; latency is measured from 1 client. We implemented explicit data

management and noti�cations using Redis and Diamond noti�cations with and without batched

updates.

Bene�t of Data Push Noti�cations

Although Diamond’s automated data management imposes a low throughput overhead, it can hurt

latency due to wide-area round trips to the Diamond cloud. For example, the latency of a Retwis

transaction is twice as high for Diamond relative to our Redis implementation because Diamond

requires two round trips per transaction, one to read and one to commit, while Redis needs only one.

Data push noti�cations reduce this latency by batching updates with reactive transaction noti-

�cations to populate the client-side cache. We turned our implementation of the 100 game from

Figure 3.3 into a benchmark: two players join each game, and players make a move as soon as the

90

La
ten

cy

0 s
2 s
4 s
6 s
8 s

Number of Rounds Passed

6 7 8 9 10 11 12 13 14 15 16 17

Figure 3.10: Latency of 100 game rounds during failure.Wemeasured the latency for both players to

make a move and killed the leader of the storage partition a er about 15 seconds. A er recovery, the

leader moves to another geographic region, increasing overall messaging latency on each move.

other player �nishes (i.e., zero “think” time). ¿is experiment is ideal because the read set of the

reactive transaction does not change, and it overlaps with the read set of the read-write transaction.

We also design an implementation using Redis, where noti�cations carry updates to clients as a

manual version of data push noti�cations. We measure the latency from one player’s client for each

player to take a turn or for one round of the game. Figure 3.9 shows that data push noti�cations reduce

the overall latency by almost 50% by eliminating wide-area reads for both the reactive and read-write

transactions in the game. As a result, Diamond has 30% lower latency and stronger transactional

guarantees than our Redis implementation.

Impact of Wide-area Storage Server Failures

Failures a�ect the latency of both reactive and read-write transactions. To measure this impact, we

used the same 100 game workload and killed a back-end server during the game. To increase the

recovery overhead, we geo-replicated the back-end servers across Asia, US-Central and Europe, while

clients remained in US-East.

Figure 3.10 shows the latency of each round. Note that the latency is higher than that in the

previous experiment because the VR leader has to wait for a response from a quorum of replicas,

91

which take at least 100 ms, and up to 150 ms, to contact. About 15 seconds into the game, we kill the

leader in US-Central, switching it to Europe. ¿e latency of each round increases to almost 4 seconds

a erwards: the latency between the front-end servers and the leader in Europe increases to 100 ms,

and the latency from the leader to the remaining replica in Asia increases to 250 ms. Despite this,

the round during the failure takes only 7 seconds, meaning that Diamond can detect the failure and

replace the leader in less than 3 seconds.

End-user Application Latency

To evaluate Diamond’s impact on the user experience, we measure the latency of user operations in

two apps from Section 3.5.2 built with and without Diamond. PyScrabble is a desktop application,

while our Chat Room app runs on Android. ¿e ping times to the Diamond cloud were ≈38 ms on
the desktop and ≈46 ms on the Android tablet.

Figure 3.11 (le) shows two operations for PyScrabble: MakeMove commits a transaction that

updates the user’s move, and DisplayMove includes MakeMove plus the noti�cation and reactive

transaction to make it visible. Compared to the original PyScrabble, Diamond’s latency is slightly

higher (9% and 16%, respectively). Figure 3.11 (right) shows operations for the Chat Room on an

Android tablet. ReadLog gets the full chat log, and PostMessage gets the chat log, appends a message,

and commits it back. ¿e Diamond version is a few percent faster than the Redis version because it

runs in native C++, while the Redis version uses a Java HTTP client. Overall, we found the latency

di�erences between Diamond and non-Diamond operations were not perceivable to users.

3.6 Related Work

Diamond takes inspiration from wide-area storage systems, transactional storage systems and

databases, reactive programming, distributed programming frameworks, shared memory systems

and noti�cation systems.

Several commercial platforms [141, 69, 160] provide an early form of reactive data management

without distributed transactions. Other open source projects [100, 148, 57, 157, 187] have replicated

92

Figure 3.11: End-user operation latency for PyScrabble and Chat Room onDiamond and non-Diamond

implementations.

the success of their commercial counterparts. Combined, they comprise a mobile back-end market

of $1.32 billion dollars [136].

However, these products do not meet the requirements of reactive applications, still requiring

programmers to address failures and race conditions. Meteor [141] lets client-side code directly

access the database interface. However, because it uses existing databases (MongoDB [146], and most

recently, Postgres [168]) that do not support distributed transactions and o�er weak consistency

guarantees by default, programmers must still reason about race conditions and consistency bugs.

Parse [160] and Firebase [69] similarly enable clients to read, write, and subscribe to objects that

are automatically synchronized across mobile devices; however, these systems o�er no concurrency

control or transactions. As demonstrated by these Stack Over�ow questions [149, 137], programmers

�nd this to be a signi�cant issue with these systems. Diamond addresses this clear developer need by

providing ACID+R guarantees for reactive applications.

¿ere has been signi�cant work in wide-area storage systems for distributed and mobile applica-

tions, including numerous traditional instantiations [199, 111, 150] as well as more recent work [53, 27,

195, 161, 196]. Many mobile applications today use commercial storage services such as Dropbox and

others [62, 61, 99], while users can also employ revision-based storage (e.g., git [74]). Applications

o en combine distributed storage with noti�cations [4, 15]. As discussed, these systems help with

data management, but none o�ers a complete solution.

Diamond shares a data-type-based storage model with data structure stores [173, 174]. Document

93

stores (e.g., MongoDB [146]) support application objects; this prevents them from leveraging seman-

tics for better performance. ¿ese datastores, along with more traditional key-value and relational

storage systems [40, 22, 117, 197], were not designed for wide-area use although they could support

reactive applications with additional work.

Reactive transactions in Diamond are similar to database triggers [126], events [39], and material-

ized views [32]. ¿ey di�er from these mechanisms because they modify local application state and

execute application code rather than database queries that update storage state. Diamond’s design

draws on ¿ial� [4]; however, ¿ial� cannot e�ciently support data push noti�cations without

insight into the application’s access patterns.

Docc is similar to Herlihy [90, 89] and Weihl’s [215] work on concurrency control for abstract

data types. However, Diamond applies their techniques to CRDTs [182] over a range of isolation levels

in the wide area. Docc is also related to MDCC [113] and Egalitarian Paxos [147]; however, Docc

uses commutativity for transactional concurrency control rather than Paxos ordering and supports

more data types. Docc extends recent work on so ware transactional objects [91] for single-node

databases to the wide area; integrating the two would let programmers implement custom data types

in Diamond.

Diamond does not strive to support a fully reactive, data-�ow-based programming model, like

functional reactive or constraint-based programming [213, 16]; however, reactive transactions are

based on the idea of change propagation. Recent interest in reactive programming for web client UIs

has resulted in Facebook’s popular React.js [170], the ReactiveX projects [171], and Google’s Agera[75].

DREAM [135], a recently proposed, distributed reactive platform, lacks transactional guarantees.

Sapphire [221], another recent programming platform formobile/could applications, does not support

reactivity, distributed transactions, or general-purpose data management.

3.7 Summary

¿is paper described Diamond, the �rst data management service for wide-area reactive applications.

Diamond introduced three new concepts: the rmap primitive, reactive transactions, and Docc. Our

evaluation demonstrated that: (1) Diamond’s programming model greatly simpli�es reactive applica-

94

tions, (2) Diamond’s strong transactional guarantees eliminate data race bugs, and (3) Diamond’s low

performance overhead has no impact on the end-user.

95

4 | TAPIR

Distributed storage systems helpmobile/cloud applicationsmeetmany of the requirements previously

covered in Section 1.3. Because mobile/cloud applications have signi�cant amounts of concurrency,

programmers need storage systems with support for distributed transactions to achieve strong

consistency guarantees. Several recent systems [113, 22, 65, 45] meet this need, notably Google’s

Spanner system [48], which guarantees linearizable transaction ordering.1

For application programmers, distributed transactional storage with strong consistency comes

at a price. ¿ese systems commonly use replication for fault-tolerance, and replication protocols

with strong consistency, like Paxos, impose a high performance cost, while more e�cient, weak

consistency protocols fail to provide strong system guarantees.

Signi�cant prior work has addressed improving the performance of transactional storage systems

– including systems that optimize for read-only transactions [22, 48], more restrictive transaction

models [113, 7, 50], or weaker consistency guarantees [132, 188, 21]. However, none of these systems

have addressed both latency and throughput for general-purpose, replicated, read-write transactions

with strong consistency.

In this chapter, we use a new approach to reduce the cost of replicated, read-write transactions

and make transactional storage more a�ordable for programmers. Our key insight is that existing

transactional storage systems waste work and performance by incorporating a distributed transaction

protocol and a replication protocol that both enforce strong consistency. Instead, we show that it is

possible to provide distributed transactions with better performance and the same transaction and

1Spanner’s linearizable transaction ordering is also referred to as strict serializable isolation or external consistency.

96

consistency model using replication with no consistency.

To demonstrate our approach, we designed TAPIR – the Transactional Application Protocol for

Inconsistent Replication. TAPIR uses a new replication technique, called inconsistent replication (IR),

that provides fault tolerance without consistency. Rather than an ordered operation log, IR presents

an unordered operation set to applications. Successful operations execute at a majority of the replicas

and survive failures, but replicas can execute them in any order. ¿us, IR needs no cross-replica

coordination or designated leader for operation processing. However, unlike eventual consistency,

IR allows applications to enforce higher-level invariants when needed.

¿us, despite IR’s weak consistency guarantees, TAPIR provides linearizable read-write transac-

tions and supports globally-consistent reads across the database at a timestamp – the same guarantees

as Spanner. TAPIR e�ciently leverages IR to distribute read-write transactions in a single round-trip

and order transactions globally across partitions and replicas with no centralized coordination.

We implemented TAPIR in a new distributed transactional key-value store called tapir-kv, which

supports linearizable transactions over a partitioned set of keys. Our experiments found that tapir-

kv had: (1) 50% lower commit latency and (2) more than 3× better throughput compared to systems
using conventional transaction protocols, including an implementation of Spanner’s transaction

protocol, and (3) comparable performance to MongoDB [146] and Redis [173], widely-used eventual

consistency systems.

¿is chapter presents the following contributions to the design of distributed, replicated transac-

tion systems:

• We de�ne inconsistent replication, a new replication technique that provides fault tolerance

without consistency.

• We design TAPIR, a new distributed transaction protocol that provides strict serializable

transactions using inconsistent replication for fault tolerance.

• We build and evaluate tapir-kv, a key-value store that combines inconsistent replication and

TAPIR to achieve high-performance transactional storage.

97

4.1 Background

2PC

CC

R R R

CC

R R R

CC

R R R

Distributed
Transaction
Protocol

Replication
Protocol

Figure 4.1: Today’s common architecture for distributed transactional storage systems.¿e distributed

transaction protocol consists of an atomic commitment protocol, commonly Two-Phase Commit

(2PC), and a concurrency control (CC) mechanism. ¿is runs atop a replication (R) protocol, like

Paxos.

Replication protocols have become an important component in distributed storage systems.

Modern storage systems commonly partition data into shards for scalability and then replicate

each shard for fault-tolerance and availability [22, 40, 48, 134]. To support transactions with strong

consistency, they must implement both a distributed transaction protocol – to ensure atomicity and

consistency for transactions across shards – and a replication protocol – to ensure transactions are

not lost (provided that no more than half of the replicas in each shard fail at once). As shown

in Figure 4.1, these systems typically place the transaction protocol, which combines an atomic

commitment protocol and a concurrency control mechanism, on top of the replication protocol

(although alternative architectures have also occasionally been proposed [134]).

Distributed transaction protocols assume the availability of an ordered, fault-tolerant log. ¿is

ordered log abstraction is easily and e�ciently implemented with a spinning disk but becomes

more complicated and expensive with replication. To enforce the serial ordering of log operations,

transactional storage systemsmust integrate a costly replication protocol with strong consistency (e.g.,

Paxos [119], Viewstamped Replication [156] or virtual synchrony [31]) rather than a more e�cient,

weak consistency protocol [116, 178].

¿e traditional log abstraction imposes a serious performance penalty on replicated transactional

98

storage systems, because it enforces strict serial ordering using expensive distributed coordination in

two places: the replication protocol enforces a serial ordering of operations across replicas in each

shard, while the distributed transaction protocol enforces a serial ordering of transactions across

shards.¿is redundancy impairs latency and throughput for systems that integrate both protocols.¿e

replication protocol must coordinate across replicas on every operation to enforce strong consistency;

as a result, it takes at least two round-trips to order any read-write transaction. Further, to e�ciently

order operations, these protocols typically rely on a replica leader, which can introduce a throughput

bottleneck to the system.

Client
Zone 1 Zone 2 Zone 3

Shard
A

Shard
B

(leader)

Shard
C

Shard
A

(leader)

Shard
B

Shard
C

Shard
A

Shard
B

Shard
C

(leader)

e
xe

c
u
tio

n

BEGINBEGIN

READ(a)

WRITE(b)

READ(c)

p
re

p
a
re

PREPARE(A)

PREPARE(B)

PREPARE(C)

c
o
m

m
it

COMMIT(A)

COMMIT(B)

COMMIT(C)

Figure 4.2: Example read-write transaction using two-phase commit, viewstamped replication and

strict two-phase locking. Availability zones represent either a cluster, datacenter or geographic region.

Each shard holds a partition of the data stored in the system and has replicas in each zone for fault

tolerance. ¿e red, dashed lines represent redundant coordination in the replication layer.

99

As an example, Figure 4.2 shows the redundant coordination required for a single read-write

transaction in a system like Spanner. Within the transaction, Read operations go to the shard leaders

(which may be in other datacenters), because the operations must be ordered across replicas, even

though they are not replicated. To Prepare a transaction for commit, the transaction protocol must

coordinate transaction ordering across shards, and then the replication protocol coordinates the

Prepare operation ordering across replicas. As a result, it takes at least two round-trips to commit

the transaction.

In the TAPIR and IR design, we eliminate the redundancy of strict serial ordering over the two

layers and its associated performance costs. IR is the �rst replication protocol to provide pure fault

tolerance without consistency. Instead of an ordered operation log, IR presents the abstraction of an

unordered operation set. Existing transaction protocols cannot e�ciently use IR, so TAPIR is the �rst

transaction protocol designed to provide linearizable transactions on IR.

4.2 Inconsistent Replication

Inconsistent replication (IR) is an e�cient replication protocol designed to be used with a higher-level

protocol, like a distributed transaction protocol. IR provides fault-tolerance without enforcing any

consistency guarantees of its own. Instead, it allows the higher-level protocol, which we refer to as

the application protocol, to decide the outcome of con�icting operations and recover those decisions

through IR’s fault-tolerant, unordered operation set.

4.2.1 IR Overview

Application protocols invoke operations through IR in one of two modes:

• inconsistent – operations can execute in any order. Successful operations persist across failures.

• consensus – operations execute in any order, but return a single consensus result. Successful

operations and their consensus results persist across failures.

inconsistent operations are similar to operations in weak consistency replication protocols: they

100

can execute in di�erent orders at each replica, and the application protocol must resolve con�icts

a erwards. In contrast, consensus operations allow the application protocol to decide the outcome

of con�icts (by executing a decide function speci�ed by the application protocol) and recover that

decision a erwards by ensuring that the chosen result persists across failures as the consensus result.

In this way, consensus operations can serve as the basic building block for the higher-level guarantees

of application protocols. For example, a distributed transaction protocol can decide which of two

con�icting transactions will commit, and IR will ensure that decision persists across failures.

IR Application Protocol Interface

Figure 4.3 summarizes the IR interfaces at clients and replicas. Application protocols invoke operations

through a client-side IR library using InvokeInconsistent and InvokeConsensus, and then IR runs

operations using the ExecInconsistent and ExecConsensus upcalls at the replicas.

If replicas return con�icting/non-matching results for a consensus operation, IR allows the

application protocol to decide the operation’s outcome by invoking the decide function – passed in by

the application protocol to InvokeConsensus – in the client-side library. ¿e decide function takes

the list of returned results (the candidate results) and returns a single result, which IR ensures will

persist as the consensus result. ¿e application protocol can later recover the consensus result to �nd

out its decision to con�icting operations.

Some replicas may miss operations or need to reconcile their state if the consensus result chosen

by the application protocol does not match their result. To ensure that IR replicas eventually converge,

they periodically synchronize. Similar to eventual consistency, IR relies on the application protocol to

reconcile inconsistent replicas. On synchronization, a single IR node �rst upcalls into the application

protocol with Merge, which takes records from inconsistent replicas and merges them into amaster

record of successful operations and consensus results. ¿en, IR upcalls into the application protocol

with Sync at each replica. Sync takes themaster record and reconciles application protocol state to

make the replica consistent with the chosen consensus results.

101

Client Interface

InvokeInconsistent(op)

InvokeConsensus(op), decide(results))→ result

Replica Upcalls
ExecInconsistent(op) ExecConsensus(op) → result

Sync(R) Merge(d, u) → record

Client State

• client id - unique identi�er for the client

• operation counter - # of sent operations

Replica State

• state - current replica state; either normal or view-changing

• record - unordered set of operations and consensus results

Figure 4.3: Summary of IR interfaces and client/replica state.

IR Guarantees

We de�ne a successful operation to be one that returns to the application protocol. ¿e operation set

of any IR group includes all successful operations. We de�ne an operation X as being visible to an

operation Y if one of the replicas executing Y has previously executed X. IR ensures the following

properties for the operation set:

P1. [Fault tolerance] At any time, every operation in the operation set is in the record of at least

one replica in any quorum of f + 1 non-failed replicas.

102

Application
Protocol Client

IR Client

InvokeInconsistent

InvokeConsensus decide

Application
Protocol Server

IR Replica

ExecInconsistent

ExecConsensus
Merge

Sync

Client Node Server Node
Figure 4.4: IR Call Flow.

P2. [Visibility] For any two operations in the operation set, at least one is visible to the other.

P3. [Consensus results] At any time, the result returned by a successful consensus operation is in

the record of at least one replica in any quorum.¿e only exception is if the consensus result has

been explicitly modi�ed by the application protocol through Merge, a er which the outcome

of Merge will be recorded instead.

IR ensures guarantees are met for up to f simultaneous failures out of 2 f + 1 replicas2 and any
number of client failures. Replicas must fail by crashing, without Byzantine behavior. We assume

an asynchronous network where messages can be lost or delivered out of order. IR does not require

synchronous disk writes, ensuring guarantees are maintained even if clients or replicas lose state on

failure. IR makes progress (operations will eventually become successful) provided that messages

that are repeatedly resent are eventually delivered before the recipients time out.

2Using more than 2 f + 1 replicas for f failures is possible but illogical because it requires a larger quorum size with
no additional bene�t.

103

Application Protocol Example: Fault-Tolerant Lock Server

As an example, we show how to build a simple lock server using IR. ¿e lock server’s guarantee is

mutual exclusion: a lock cannot be held by two clients at once. We replicate Lock as a consensus

operation and Unlock as an inconsistent operation. A client application acquires the lock only if

Lock successfully returns ok as a consensus result.

Since operations can run in any order at the replicas, clients use unique ids (e.g., a tuple of client id

and a sequence number) to identify corresponding Lock and Unlock operations and only call Unlock

if Lock �rst succeeds. Replicas will therefore be able to later match up Lock and Unlock operations,

regardless of order, and determine the lock’s status.

Note that inconsistent operations are not commutative because they can have side-e�ects that

a�ect the outcome of consensus operations. If an Unlock and Lock execute in di�erent orders at

di�erent replicas, some replicas might have the lock free, while others might not. If replicas return

di�erent results to Lock, IR invokes the lock server’s decide function, which returns ok if f + 1
replicas returned ok and no otherwise. IR only invokes Merge and Sync on recovery, so we defer

their discussion until Section 4.2.2.

IR’s guarantees ensure correctness for our lock server. P1 ensures that held locks are persistent: a

Lock operation persists at one or more replicas in any quorum. P2 ensures mutual exclusion: for any

two con�icting Lock operations, one is visible to the other in any quorum; therefore, IR will never

receive f + 1 matching ok results, precluding the decide function from returning ok. P3 ensures that

once the client application receives ok from a Lock, the result will not change. ¿e lock server’s Merge

function will not change it, as we will show later, and IR ensures that the ok will persist in the record

of at least one replica out of any quorum.

4.2.2 IR Protocol

Figure 4.3 shows the IR state at the clients and replicas. Each IR client keeps an operation counter,

which, combined with the client id, uniquely identi�es operations. Each replica keeps an unordered

record of executed operations and results for consensus operations. Replicas add inconsistent oper-

104

ations to their record as tentative and then mark them as finalized once they execute. consen-

sus operations are �rst marked tentative with the result of locally executing the operation, then

finalized once the record has the consensus result.

IR uses four sub-protocols – operation processing, replica recovery/synchronization, client recov-

ery, and group membership change. We discuss the �rst three here; the last is identical to that of

Viewstamped Replication [128].

Operation Processing

We begin by describing IR’s normal-case inconsistent operation processing protocol without failures:

1. ¿e client sends ⟨propose, id , op⟩ to all replicas, where id is the operation id and op is the
operation.

2. Each replica writes id and op to its record as tentative, then responds to the client with

⟨reply, id⟩.

3. Once the client receives f + 1 responses from replicas (retrying if necessary), it returns to the

application protocol and asynchronously sends ⟨finalize, id⟩ to all replicas. (finalize can
also be piggy-backed on the client’s next message.)

4. On finalize, replicas upcall into the application protocol with ExecInconsistent(op) and

mark op as finalized.

Due to the lack of consistency, IR can successfully complete an inconsistent operation with a single

round-trip to f + 1 replicas and no coordination across replicas. If the IR client does not receive a
response to its prepare from f + 1 replicas, it will retry until it does.

Next, we describe the normal-case consensus operation processing protocol, which has both a

fast path and a slow path. IR uses the fast path when it can achieve a fast quorum of ⌈ 32 f ⌉ + 1 replicas
that return matching results to the operation. Similar to Fast Paxos and Speculative Paxos [167], IR

requires a fast quorum to ensure that a majority of the replicas in any quorum agrees to the consensus

105

result. ¿is quorum size is necessary to execute operations in a single round trip when using a replica

group of size 2 f + 1 [121]; an alternative would be to use quorums of size 2 f + 1 in a system with 3 f + 1
replicas.

When IR cannot achieve a fast quorum, either because replicas did not return enough matching

results (e.g., if there are con�icting concurrent operations) or because not enough replicas responded

(e.g., if more than f
2 are down), then it must take the slow path. We describe both below:

1. ¿e client sends ⟨propose, id , op⟩ to all replicas.

2. Each replica calls into the application protocol with ExecConsensus(op) and writes id, op, and

result to its record as tentative. ¿e replica responds to the client with ⟨reply, id , resul t⟩.

3. If the client receives at least ⌈ 32 f ⌉ + 1 matching results (within a timeout), then it takes the fast
path: the client returns result to the application protocol andasynchronously sends ⟨finalize, id , resul t⟩
to all replicas.

4. Otherwise, the client takes the slow path: once it receives f + 1 responses (retrying if necessary),
then it sends ⟨finalize, id , resul t⟩ to all replicas, where result is obtained from executing

the decide function.

5. On receiving finalize, each replica marks the operation as finalized, updating its record if

the received result is di�erent, and sends ⟨confirm, id⟩ to the client.

6. On the slow path, the client returns result to the application protocol once it has received f + 1
confirm responses.

¿e fast path for consensus operations takes a single round trip to ⌈ 32 f ⌉ + 1 replicas, while the slow
path requires two round-trips to at least f + 1 replicas. Note that IR replicas can execute operations
in di�erent orders and still return matching responses, so IR can use the fast path without a strict

serial ordering of operations across replicas. IR can also run the fast path and slow path in parallel as

an optimization.

106

Replica Recovery and Synchronization

IR uses a single protocol for recovering failed replicas and running periodic synchronizations. On

recovery, we must ensure that the failed replica applies all operations it may have lost or missed in

the operation set, so we use the same protocol to periodically bring all replicas up-to-date.

To handle recovery and synchronization, we introduce view changes into the IR protocol, similar

to Viewstamped Replication (VR) [156]. ¿ese maintain IR’s correctness guarantees across failures.

Each IR view change is run by a leader; leaders coordinate only view changes,not operation processing.

During a view change, the leader has just one task: to make at least f + 1 replicas up-to-date (i.e.,
they have applied all operations in the operation set) and consistent with each other (i.e., they have

applied the same consensus results). IR view changes require a leader because polling inconsistent

replicas can lead to con�icting sets of operations and consensus results. ¿us, the leader must decide

on amaster record that replicas can then use to synchronize with each other.

To support view changes, each IR replica maintains a current view, which consists of the identity

of the leader, a list of the replicas in the group, and a (monotonically increasing) view number uniquely

identifying the view. Each IR replica can be in one of the three states: normal, view-changing or

recovering. Replicas process operations only in the normal state. We make four additions to IR’s

operation processing protocol:

1. IR replicas send their current view number in every response to clients. For an operation to be

considered successful, the IR client must receive responses with matching view numbers. For

consensus operations, the view numbers in reply and confirm must match as well. If a client

receives responses with di�erent view numbers, it noti�es the replicas in the older view.

2. On receiving a message with a view number that is higher than its current view, a replica moves

to the view-changing state and requests the master record from any replica in the higher

view. It replaces its own record with the master record and upcalls into the application protocol

with Sync before returning to normal state.

3. On propose, each replica �rst checks whether the operation was already finalized by a view

107

change. If so, the replica responds with ⟨reply, id , finalized, v , [resul t]⟩, where v is the
replica’s current view number and result is the consensus result for consensus operations.

4. If the client receives replywith a finalized status forconsensus operations, it sends ⟨finalize, id , resul t⟩
with the received result and waits until it receives f + 1 confirm responses in the same view

before returning result to the application protocol.

IR’s view change protocol is similar to VR’s. Each view change is �nalized by a leader (the leader is

unique per view and deterministically chosen). However, in IR the leadermerges records, rather than

taking the longest log from the latest view. Records must be merged because, without the ordering

requirement, any single record could be incomplete. While in VR the leader is used to process

operations as well, in contrast, IR uses the leader only for performing view changes. On recovery, the

IR replica performs a view change to make sure it either receives all operations it might have sent a

reply for, or cause a retry for all the on-going operations it might have sent a reply for. ¿is contrast

with VR’s recovery protocol where the recovering replica did not need to perform a view change

because it could interrogate a su�ciently up-to-date leader for on-going operations it might have

participated in. ¿e full view change protocol follows:

1. A replica that notices the need for a view change advances its view-number and sets its status

to either view-changing or recovering – if the replica just started a recovery. A replica

notices the need for a view change either based on its own timer (the current view change was

not �nalized in time by its leader), or because it is a recovering replica, or because it received a

do-view-change message for a view with a larger number than its own current view-number.

2. If the replica is not a recovering replica, it �rst saves to disk the updated view number. ¿e

replica then sends a ⟨do-view-change, rec, v , v′⟩message to the new leader, except when

the sending replica is a recovering replica, and the same message, without the rec �eld, to the

other replicas. Here v identi�es the new view, v′ is the latest view in which the replica’s status

was normal, and rec is its unordered record of executed operations. ¿e new view, v, sent in a

do-view-change message is either the incremented view-number of the replica if the replica

108

is non-faulty, or the view number received in a do-view-change message, or the number a

recovering replica read from its disc.

3. Once the non-faulty leader receives f records from f non-recovering replicas, it uses a merge

function, shown in Figure 4.5, to join them into a master record R.¿e merge function uses

v′’s (i.e. latest view number replicas were in normal state) when computing record-with-

max-view.

4. ¿e leader updates its view number to vnew , where vnew is the view number from the received

messages, and its status to normal. It then informs the other replicas of the completion of the

view change by sending a ⟨start-view, vnew , R⟩, where R is the master record.

5. Any replica that receives start-view: if vnew is smaller than the replica’s current view number,

the replica stays in its current state. Otherwise, if vnew is higher than or equal to its current view

number, the replica replaces its own record with R and upcalls into the application protocol

with Sync as well.

6. Once the replica �nishes, it updates its current view number, v, saves v + 1 to disc (signifying
that it will never recover in a view lower or equal than v), and enters the normal state.

Once the leader has received f + 1 records, it merges the records from replicas in the latest view

into a master record, R, using ir-merge-records(records) (see Figure 4.5), where records is the
set of received records from replicas in the highest view. ir-merge-records starts by adding all

inconsistent operations and consensus operations marked finalized to R and calling Sync into the

application protocol. ¿ese operations must persist in the next view, so we �rst apply them to the

leader, ensuring that they are visible to any operations for which the leader will decide consensus

results next in Merge. As an example, Sync for the lock server matches up all corresponding Lock and

Unlock by id; if there are unmatched Locks, it sets locked = true; otherwise, locked = false.

IR asks the application protocol to decide the consensus result for the remaining tentative

consensus operations, which either: (1) have a matching result, which we de�ne as themajority result,

109

ir-merge-records(records)
1 R, d, u = ∅
2 for ∀op ∈ records
3 if op. type == inconsistent

4 R = R ∪ op
5 elseif op. type == consensus and op. status == finalized

6 R = R ∪ op
7 elseif op. type == consensus and op. status == tentative

8 if op.result in more than f
2 + 1 records

9 d = d ∪ op
10 else

11 u = u ∪ op
12 Sync(R)
13 return R ∪ Merge(d , u)

Figure 4.5:Merge function for the master record.Wemerge all records from replicas in the latest view,

which is always a strict super set of the records from replicas in lower views.

in at least ⌈ f
2 ⌉ + 1 records or (2) do not. IR places these operations in d and u, respectively, and calls

Merge(d, u) into the application protocol, which must return a consensus result for every operation
in d and u.

IR must rely on the application protocol to decide consensus results for several reasons. For

operations in d, IR cannot tell whether the operation succeeded with the majority result on the fast

path, or whether it took the slow path and the application protocol decide’d a di�erent result that

was later lost. In some cases, it is not safe for IR to keep the majority result because it would violate

application protocol invariants. For example, in the lock server, ok could be the majority result if

only ⌈ f
2 ⌉ + 1 replicas replied ok, but the other replicas might have accepted a con�icting lock request.

110

However, it is also possible that the other replicas did respond ok, in which case ok would have been

a successful response on the fast-path.

¿e need to resolve this ambiguity is the reason for the caveat in IR’s consensus property (P3)

that consensus results can be changed in Merge. Fortunately, the application protocol can ensure that

successful consensus results do not change in Merge, simply by maintaining the majority results in d

on Merge unless they violate invariants. ¿e merge function for the lock server, therefore, does not

change a majority response of ok, unless another client holds the lock. In that case, the operation in

d could not have returned a successful consensus result to the client (either through the fast or the

slow path), so it is safe to change its result.

For operations in u, IR needs to invoke decide but cannot without at least f + 1 results, so uses
Merge instead. ¿e application protocol can decide consensus results in Merge without f + 1 replica
results and still preserve IR’s visibility property because IR has already applied all of the operations

in R and d, which are the only operations de�nitely in the operation set, at this point.

¿e leader adds all operations returned from Merge and their consensus results to R, then sends

R to the other replicas, which call Sync(R) into the application protocol and replace their own records

with R. ¿e view change is complete a er at least f + 1 replicas have exchanged and merged records
and sync’d with the master record. A replica can only process requests in the new view (in the

normal state) a er it completes the view change protocol. At this point, any recovering replicas

can also be considered recovered. If the leader of the view change does not �nish the view change

by some timeout, the group will elect a new leader to complete the protocol by starting a new view

change with a larger view number.

Client Recovery

We assume that clients can lose some or all of their state on failure. On recovery, a client must ensure

that: (1) it recovers its latest operation counter, and (2) any operations that it started but did not �nish

are finalized. To do so, the recovering client requests the id for its latest operation from a majority

of the replicas. ¿is poll gets the client the largest id that the group has seen from it, so the client

takes the largest returned id and increments it to use as its new operation counter.

111

A view change �nalizes all tentative operation on the next synchronization, so the client does

not need to �nish previously started operations and IR does not have to worry about clients failing

to recover a er failure.

4.2.3 Correctness

For correctness,wemust show that IR provides the following properties for operations in the operation

set:

P1. [Fault tolerance] At any time, every operation in the operation set is in the record of at least

one replica in any quorum of f + 1 non-failed replicas.

P2. [Visibility] For any two consensus operations in the operation set, at least one is visible to the

other.

P3. [Consensus results] At any time, every successful consensus result is in the record of at least one

replica in any quorum. Again, the only exception being that the application protocol modi�ed

the result through Merge.

P4. [Eventual Consistency] Given a su�ciently long period of synchrony, any operation in the

operation set (and its consensus result, if applicable) will eventually have executed or Synced

at every non-faulty replica.

In Appendix B, we give a TLA+ speci�cation, which we have model-checked. In addition, we

have added an eventual consistency property, which is not necessary for correctness, but is useful for

application protocols. As this is a liveness property, it holds only during periods of synchrony, when

messages that are repeatedly resent are eventually delivered before the recipient times out [70].

We begin our proof of correctness by de�ning the following terms:

D1. An operation is applied at a replica if that replica has executed (through ExecInconsistent or

ExecConsensus) or synchronized (through Sync) the operation.

112

D2. An operation X is visible to a consensus operation Y if one of the replicas providing candidate

results for Y has previously applied X.

D3. ¿e persistent operation set is the set of operations applied at at least one replica in any quorum

of f + 1 non-failed replicas.

We �rst prove a number of invariants about the persistent operation set. Given these invariants,

we can show that the IR properties hold.

I1. ¿e size of persistent operation set is monotomically increasing.

I1 holds at every replica during normal operation because replicas never roll back executed

operations. I1 also hold across view changes. ¿e leader merges all operations from the records

of f + 1 non-faulty replicas into the master record, so by quorum intersection, the master record

contains every operation in the persistent operation set. ¿en, at least f + 1 non-faulty replicas replace
their record with the master record and applies the master record (through Sync), so any persistent

operations before the view change will continue to persist a er the view change.

I2. All operations in the persistent operation set are visible to any consensus operation added to the

set.

consensus operations are added to the persistent set by either: (1) executing at at least a quorum

of f + 1 replicas or (2) being merged by the leader into the master record. In case 1, by de�nition, every
operation already in the persistent operation set must be applied at at least 1 replica out of the quorum

and will be visible to the added consensus operation. In case 2, the leader applies all operations in the

persistent operation set (through Sync) before running Merge, ensuring that every operation already

in the persistent operation set is visible to operations added to the persistent operation set through

Merge.

I3. ¿e result of any consensus operation in the persistent operation set is either the successful con-

sensus result or the Merge result.

113

¿e result of any consensus operations in the persistent set is either: (1) a matching result from

executing the operation (through ExecConsensus) at a fast quorum of ⌈ 32 f ⌉ + 1, (2) a result from
executing the application protocol-speci�c decide function in the client-side library, or (3) a result

from executing Merge at the leader during a view change. In case 1, the matching result will be both

the result in the persistent operation set and the successful consensus result. ¿e same holds for the

result returned from decide in case 2. During a view change, the leader may get an operation that has

already ful�lled either case 1 or case 2, and change the result in Merge. ¿e result from Merge will be

in the record and applied to at least f + 1 replicas. ¿us, either the successful consensus result or, if

the application protocol changed the result in Merge, the Merge result, will continue to persist in the

persistent operation set.

I4. All operations and consensus results in the persistent operation set in all previous view must be

applied at a replica before it executes any operations in the new view.

IR clients require that all responses come from replicas in the same view. ¿us, any replica in a

view lower than the majority, (i.e., some view v, where at least f + 1 replicas are in a view V , where

V > v), must join the higher view before participating in processing operations. In order to join the

higher view, the replica in the lower view must �nd a replica in the higher view, get the master record

and Sync with the master record from the higher view. As the master record contains all operations

in the persistent operation set, the replica will apply all operations from the persistent operation set

before processing operations in the new view.

Given these four invariants for the persistent operation set, we can show that the four properties

of IR hold. Any operation in the operation set must have executed at and received responses from

f + 1 of 2 f + 1 replicas, so by quorum intersection, all operations in the operation set must be in the

persistent operation set. ¿us, I1 directly implies P1, as any operation in the persistent operation

set will continue to be in the set. I1 and I2 imply P2 because, for any consensus operation X, all

operations added to the persistent operation set before X are visible to X and X will be visible to

all operations added to the persistent operation set a er it. I1 and I3 implies P3 because either the

successful consensus result will remain in the persistent operation set or the Merge result will. I4

114

implies P4 because, if all replicas are non-faulty for long enough, they will eventually all attempt to

participate in processing operations, which will cause them to Sync all operations in the persistent

operation set.

4.3 Building Atop IR

IR obtains performance bene�ts because it o�ersweak consistency guarantees and relies on application

protocols to resolve inconsistencies, similar to eventual consistency protocols such as Dynamo [56]

and Bayou [199]. However, unlike eventual consistency systems, which expect applications to resolve

con�icts a er they happen, IR allows application protocols to prevent con�icts before they happen.

Using consensus operations, application protocols can enforce higher-level guarantees (e.g., TAPIR’s

linearizable transaction ordering) across replicas despite IR’s weak consistency.

However, building strong guarantees on IR requires careful application protocol design. IR

cannot support certain application protocol invariants. Moreover, if misapplied, IR can even provide

applicationswithworse performance than a strongly consistent replication protocol. In this section,we

discuss the properties that application protocols need to have to correctly and e�ciently enforce higher-

level guarantees with IR and TAPIR’s techniques for e�ciently providing linearizable transactions.

4.3.1 IR Application Protocol Requirement: Invariant checks must be performed pairwise.

Application protocols can enforce certain types of invariants with IR, but not others. IR guarantees

that in any pair of consensus operations, at least one will be visible to the other (P2). ¿us, IR readily

supports invariants that can be safely checked by examining pairs of operations for con�icts. For

example, our lock server example can enforce mutual exclusion. However, application protocols

cannot check invariants that require the entire history, because each IR replicamay have an incomplete

history of operations. For example, tracking bank account balances and allowing withdrawals only if

the balance remains positive is problematic because the invariant check must consider the entire

history of deposits and withdrawals.

Despite this seemingly restrictive limitation, application protocols can still use IR to enforce

useful invariants, including lock-based concurrency control, like Strict Two-Phase Locking (S2PL).

115

As a result, distributed transaction protocols like Spanner [48] or Replicated Commit [134] would

work with IR. IR can also support optimistic concurrency control (OCC) [115] because OCC checks

are pairwise as well: each committing transaction is checked against every previously committed

transaction, so consensus operations su�ce to ensure that at least one replica sees any con�icting

transaction and aborts the transaction being checked.

4.3.2 IR Application Protocol Requirement: Application protocols must be able to change consen-

sus operation results.

Inconsistent replicas could execute consensus operations with one result and later �nd the group

agreed to a di�erent consensus result. For example, if the group in our lock server agrees to reject a

Lock operation that one replica accepted, the replica must later free the lock, and vice versa. As noted

above, the group as a whole continues to enforcemutual exclusion, so these temporary inconsistencies

are tolerable and are always resolved by the end of synchronization.

In TAPIR,we take the same approachwith distributed transaction protocols. 2PC-based protocols

are always prepared to abort transactions, so they can easily accommodate a Prepare result changing

from prepare-ok to abort. If abort changes to prepare-ok, it might temporarily cause a con�ict

at the replica, which can be correctly resolved because the group as a whole could not have agreed to

prepare-ok for two con�icting transactions.

Changing Prepare results does sometimes cause unnecessary aborts. To reduce these, TAPIR

introduces two Prepare results in addition to prepare-ok and abort: abstain and retry. abstain

helps TAPIR distinguish between con�icts with committed transactions, which will not abort, and

con�icts with prepared transactions, which may later abort. Replicas return retry if the transac-

tion has a chance of committing later. ¿e client can retry the Prepare without re-executing the

transaction.

116

4.3.3 IR Performance Principle: Application protocols should not expect operations to execute in

the same order.

To e�ciently achieve agreement on consensus results, application protocols should not rely on

operation ordering for application ordering. For example, many transaction protocols [86, 22, 113]

use Paxos operation ordering to determine transaction ordering. ¿ey would perform worse with

IR because replicas are unlikely to agree on which transaction should be next in the transaction

ordering.

In TAPIR, we use optimistic timestamp ordering to ensure that replicas agree on a single transac-

tion ordering despite executing operations in di�erent orders. Like Spanner [48], every committed

transaction has a timestamp, and committed transaction timestamps re�ect a linearizable ordering.

However, TAPIR clients, not servers, propose a timestamp for their transaction; thus, if TAPIR replicas

agree to commit a transaction, they have all agreed to the same transaction ordering.

TAPIR replicas use these timestamps to order their transaction logs and multi-versioned stores.

¿erefore, replicas can execute Commit in di�erent orders but still converge to the same application

state. TAPIR leverages loosely synchronized clocks at the clients for picking transaction timestamps,

which improves performance but is not necessary for correctness.

4.3.4 IR Performance Principle: Application protocols should use cheaper inconsistent operations

whenever possible rather than consensus operations.

By concentrating invariant checks in a few operations, application protocols can reduce consensus

operations and improve their performance. For example, in a transaction protocol, any operation

that decides transaction ordering must be a consensus operation to ensure that replicas agree to

the same transaction ordering. For locking-based transaction protocols, this is any operation that

acquires a lock. ¿us, every Read and Writemust be replicated as a consensus operation.

TAPIR improves on this by using optimistic transaction ordering and OCC, which reduces

consensus operations by concentrating all ordering decisions into a single set of validation checks

at the proposed transaction timestamp. ¿ese checks execute in Prepare, which is TAPIR’s only

117

consensus operation. Commit and Abort are inconsistent operations, while Read and Write are not

replicated.

4.4 TAPIR

¿is section details TAPIR – the Transactional Application Protocol for Inconsistent Replication. As

noted, TAPIR is designed to e�ciently leverage IR’s weak guarantees to provide high-performance

linearizable transactions. Using IR, TAPIR can order a transaction in a single round-trip to all replicas

in all participant shards without any centralized coordination.

TAPIR is designed to be layered atop IR in a replicated, transactional storage system. Together,

TAPIR and IR eliminate the redundancy in the replicated transactional system, as shown in Figure 4.2.

As a comparison, Figure 4.6 shows the coordination required for the same read-write transaction in

TAPIR with the following bene�ts: (1) TAPIR does not have any leaders or centralized coordination,

(2) TAPIR Reads always go to the closest replica, and (3) TAPIR Commit takes a single round-trip to

the participants in the common case.

4.4.1 Overview

TAPIR is designed to provide distributed transactions for a scalable storage architecture. ¿is ar-

chitecture partitions data into shards and replicates each shard across a set of storage servers for

availability and fault tolerance. Clients are front-end application servers, located in the same or

another datacenter as the storage servers, not end-hosts or user machines. ¿ey have access to a

directory of storage servers using a service like Chubby [35] or ZooKeeper [98] and directly map

data to servers using a technique like consistent hashing [109].

TAPIR provides a general storage and transaction interface for applications via a client-side

library. Note that TAPIR is the application protocol for IR; applications using TAPIR do not interact

with IR directly.

ATAPIR application Begins a transaction, then executes Reads and Writes during the transaction’s

execution period. During this period, the application can Abort the transaction. Once it �nishes

execution, the application Commits the transaction. Once the application calls Commit, it can no

118

Client
Zone 1 Zone 2 Zone 3

ex
ec

ut
io

n
BEGINBEGIN

READ(a)

WRITE(b)

READ(c)

Shard
A

Shard
C

Shard
B

Shard
A

Shard
C

Shard
B

Shard
A

Shard
C

Shard
B

pr
ep

ar
e

PREPARE(A)

PREPARE(B)

PREPARE(C)

co
m

m
it

COMMIT(A)

COMMIT(B)

COMMIT(C)

Figure 4.6: Example read-write transaction in TAPIR. TAPIR executes the same transaction pictured

in Figure 4.2 with less redundant coordination. Reads go to the closest replica and Prepare takes a

single round-trip to all replicas in all shards.

longer abort the transaction. ¿e 2PC protocol will run to completion, committing or aborting the

transaction based entirely on the decision of the participants. As a result, TAPIR’s 2PC coordinators

cannot make commit or abort decisions and do not have to be fault-tolerant. ¿is property allows

TAPIR to use clients as 2PC coordinators, as in MDCC [113], to reduce the number of round-trips to

storage servers.

TAPIR provides the traditional ACID guarantees with the strictest level of isolation: strict serial-

izability (or linearizability) of committed transactions.

119

4.4.2 Protocol

TAPIR provides transaction guarantees using a transaction processing protocol, IR functions, and a

coordinator recovery protocol.

Figure 4.7 shows TAPIR’s interfaces and state at clients and replicas. Replicas keep committed and

aborted transactions in a transaction log in timestamp order; they also maintain a multi-versioned

data store, where each version of an object is identi�ed by the timestamp of the transaction that wrote

the version. TAPIR replicas serve reads from the versioned data store and maintain the transaction

log for synchronization and checkpointing. Like other 2PC-based protocols, each TAPIR replica also

maintains a prepared list of transactions that it has agreed to commit.

Each TAPIR client supports one ongoing transaction at a time. In addition to its client id, the

client stores the state for the ongoing transaction, including the transaction id and read and write sets.

¿e transaction id must be unique, so the client uses a tuple of its client id and transaction counter,

similar to IR. TAPIR does not require synchronous disk writes at the client or the replicas, as clients

do not have to be fault-tolerant and replicas use IR.

Transaction Processing

We begin with TAPIR’s protocol for executing transactions.

1. For Write(key, object), the client bu�ers key and object in the write set until commit and returns

immediately.

2. For Read(key), if key is in the transaction’s write set, the client returns object from the write set.

If the transaction has already read key, it returns a cached copy. Otherwise, the client sends

Read(key) to the replica.

3. On receiving Read, the replica returns object and version, where object is the latest version of

key and version is the timestamp of the transaction that wrote that version.

120

Client Interface
Begin() Read(key)→object Abort()

Commit()→true/false Write(key,object)

Client State

• client id - unique client identi�er

• transaction - ongoing transaction id, read set, write set

Replica Interface
Read(key)→object,version Commit(txn,timestamp)

Abort(txn,timestamp)

Prepare(txn,timestamp)→prepare-ok/abstain/abort/(retry, t)

Replica State

• prepared list - list of transactions replica is prepared to commit

• transaction log - log of committed and aborted transactions

• store - versioned data store

Figure 4.7: Summary of TAPIR interfaces and client and replica state.

4. On response, the client puts (key, version) into the transaction’s read set and returns object to

the application.

Once the application calls Commit or Abort, the execution phase �nishes. To commit, the TAPIR

client coordinates across all participants – the shards that are responsible for the keys in the read or

write set – to �nd a single timestamp, consistent with the strict serial order of transactions, to assign

the transaction’s reads and writes, as follows:

121

tapir-exec-consensus(op)
1 txn = op.args. txn

2 timestamp = op.args. timestamp

3 if txn. id ∈ txn-log
4 if txn − log[txn. id]. status == committed
5 return prepare-ok

6 else

7 return abort

8 elseif txn. id ∈ prepared-list
9 return prepare-ok

10 else

11 return tapir-occ-check(txn, timestamp)

Figure 4.8: TAPIR’s consensus operation handler. Since Prepare is TAPIR’s only consensus operations,

tapir-exec-consensus just runs TAPIR’s prepare algorithm at replicas.

1. ¿e TAPIR client selects a proposed timestamp. Proposed timestampsmust be unique, so clients

use a tuple of their local time and their client id.

2. ¿e TAPIR client invokes Prepare(txn, timestamp) as an IR consensus operation, where times-

tamp is the proposed timestamp and txn includes the transaction id (txn. id) and the trans-

action read (txn.read_set) and write sets (txn.write_set). ¿e client invokes Prepare on all

participants through IR as a consensus operations.

3. Each TAPIR replica that receives Prepare (invoked by IR through ExecConcensus) �rst checks

its transaction log for txn. id. If found, it returns prepare-ok if the transaction committed or

abort if the transaction aborted.

122

4. Otherwise, the replica checks if txn. id is already in its prepared list. If found, it returns

prepare-ok.

5. Otherwise, the replica runs TAPIR’s OCC validation checks, which check for con�icts with the

transaction’s read and write sets at timestamp, shown in Figure 4.9.

6. Once theTAPIR client receives results from all shards, the client sends Commit(txn, timestamp) if

all shards replied prepare-ok orAbort(txn, timestamp) if any shards repliedabort orabstain.

If any shards replied retry, then the client retries with a new proposed timestamp (up to a set

limit of retries).

7. On receiving a Commit, the TAPIR replica: (1) commits the transaction to its transaction log,

(2) updates its versioned store with w, (3) removes the transaction from its prepared list (if it is

there), and (4) responds to the client.

8. On receiving a Abort, the TAPIR replica: (1) logs the abort, (2) removes the transaction from

its prepared list (if it is there), and (3) responds to the client.

Like other 2PC-based protocols, TAPIR can return the outcome of the transaction to the application

as soon as Prepare returns from all shards (in Step 6) and send the Commit operations asynchronously.

As a result, using IR, TAPIR can commit a transaction with a single round-trip to all replicas in all

shards.

IR Support

Because TAPIR’s Prepare is an IR consensus operation, TAPIR must implement a client-side decide

function, shown in Figure 4.10, which merges inconsistent Prepare results from replicas in a shard

into a single result. tapir-decide is simple: if a majority of the replicas replied prepare-ok, then it

commits the transaction. ¿is is safe because no con�icting transaction could also get a majority of

the replicas to return prepare-ok.

123

tapir-occ-check(txn, timestamp)
1 for ∀key, version ∈ txn.read-set
2 if version < store[key]. latest-version
3 return abort

4 elseif version < min(prepared-writes[key])
5 return abstain

6 for ∀key ∈ txn.write-set
7 if timestamp < max(prepared-reads[key])
8 return retry, max(prepared-reads[key])
9 elseif timestamp < store[key]. latestVersion
10 return retry, store[key]. latestVersion
11 prepared-list[txn. id] = timestamp

12 return prepare-ok

Figure 4.9: OCC validation function executed on Prepare. prepared-reads and prepared-writes

get the proposed timestamps for all transactions that the replica has prepared and read or write to

key, respectively.

TAPIR also supports Merge, shown in Figure 4.11, and Sync, shown in Figure 4.12, at replicas.

tapir-merge �rst removes any prepared transactions from the leader where the Prepare operation

is tentative. ¿is step removes any inconsistencies that the leader may have because it executed a

Prepare di�erently – out-of-order or missed – by the rest of the group.

¿e next step checks d for any prepare-ok results that might have succeeded on the IR fast

path and need to be preserved. If the transaction has not committed or aborted already, we re-run

tapir-occ-check to check for con�icts with other previously prepared or committed transactions.

If the transaction con�icts, then we know that its prepare-ok did not succeed at a fast quorum, so we

can change it to abort; otherwise, for correctness, we must preserve the prepare-ok because TAPIR

124

tapir-decide(resul ts)
1 if abort ∈ resul ts
2 return abort

3 if count(prepare-ok, resul ts) ≥ f + 1
4 return prepare-ok

5 if count(abstain, resul ts) ≥ f + 1
6 return abort

7 if retry ∈ resul ts
8 return retry, max(resul ts.retry-timestamp)
9 return abort

Figure 4.10: TAPIR’s decide function. IR runs this if replicas return di�erent results on Prepare.

may have moved on to the commit phase of 2PC. Further, we know that it is safe to preserve these

prepare-ok results because, if they con�icted with another transaction, the con�icting transaction

must have gotten its consensus result on the IR slow path, so if tapir-occ-check did not �nd a

con�ict, then the con�icting transaction’s Preparemust not have succeeded.

Finally, for the operations in u, we simply decide a result for each operation and preserve it. We

know that the leader is now consistent with f + 1 replicas, so it can make decisions on consensus
result for the majority.

TAPIR’s sync function, shown in Figure 4.12, runs at the other replicas to reconcile TAPIR state

with the master records, correcting missed operations or consensus results where the replica did

not agree with the group. It simply applies operations and consensus results to the replica’s state:

it logs aborts and commits, and prepares uncommitted transactions where the group responded

prepare-ok.

125

tapir-merge(d , u)
1 for ∀op ∈ d ∪ u

2 txn = op.args. txn

3 if txn. id ∈ prepared-list
4 delete(prepared-list, txn. id)
5 for op ∈ d
6 txn = op.args. txn

7 timestamp = op.args. timestamp

8 if txn. id /∈ txn-log and op.result == prepare-ok
9 R[op].result = tapir-occ-check(txn, timestamp)
10 else

11 R[op].result = op.result

12 for op ∈ u
13 txn = op.args. txn

14 timestamp = op.args. timestamp

15 R[op].result = tapir-occ-check(txn, timestamp)
16 return R

Figure 4.11: TAPIR’s merge function. IR runs this function at the leader on synchronization and

recovery.

Coordinator Recovery

If a client fails while in the process of committing a transaction, TAPIR ensures that the transaction

runs to completion (either commits or aborts). Further, the client may have returned the commit or

abort to the application, so we must ensure that the client’s commit decision is preserved. For this

purpose, TAPIR uses the cooperative termination protocol de�ned by Bernstein [29] for coordinator

126

tapir-sync(R)
1 for ∀op ∈ R
2 if op /∈ r or op.result ≠ r[op].result
3 txn = op.args. txn

4 timestamp = op.args. timestamp

5 if op. func == Prepare

6 if op.result == prepare-ok

7 if txn. id /∈ prepared-list and txn. id /∈ txn-log
8 prepared-list[txn. id] = timestamp

9 elseif txn. id ∈ prepared-list
10 delete(prepared-list, txn. id)
11 else

12 txn-log[txn. id]. txn = txn

13 txn-log[txn. id]. timestamp = timestamp

14 if op. func == Commit

15 txn-log[txn. id]. status = committed

16 else

17 txn-log[txn. id]. status = aborted

18 if txn. id ∈ prepared-list
19 delete(prepared-list, txn. id)

Figure 4.12: TAPIR’s function for synchronizing inconsistent replica state. IR runs this on each replica

except the leader during synchronization. r is the replica’s local record.

recovery and used by MDCC [113]. TAPIR designates one of the participant shards as a backup shard,

the replicas in which can serve as a backup coordinator if the client fails. As observed by MDCC,

127

because coordinators cannot unilaterally abort transactions (i.e., if a client receives f + 1 prepare-ok
responses from each participant, it must commit the transaction), a backup coordinator can safely

complete the protocol without blocking. However, we must ensure that no two coordinators for a

transaction are active at the same time.

¿ere are several ways to achieve this goal. We could log the currently active backup coordinator

with a service like Chubby [35] or ZooKeeper [98]. We could give each backup coordinator a lease in

turn, where the initial lease is given the the client as the default coordinator.

However, we chose to use a coordinator change protocol, similar to IRâĂŹs view change protocol.

For each transaction,we designate one of the participant shards as a backup shard.¿e initial coordina-

tor for every transaction is the client. In every subsequent view, the currently active backup coordinator

is a replica from the backup shard, identi�ed by indexing into the shard with a coordinator-view

number.

For every transaction in its prepared-list, each TAPIR replica keeps the transaction’s backup shard

and a current coordinator view. Replicas only process and respond to Prepare, Commit and Abort

operations from the active coordinator designated by the current view. Replicas also keep a no-votelist

with transactions that the replica knows a backup coordinator may abort.

If the current coordinator is suspected to have failed, any of the participants can initiate a coor-

dinator change. In doing so, it keeps the client or any previous backup coordinator from sending

operations to the participating replicas. ¿e new coordinator can then poll the participant using

Prepare, and make a commit decision without interference from other coordinators. ¿e election

protocol for a new backup coordinator progresses as follows:

1. Any replica in any participant shard calls CoordinatorChange through IR as a consensus

operation on the backup shard.

2. Each replica that executes CoordinatorChange through IR, increments and returns v, where is

v is its current view number. If the replica is not already in the view-changing state, it sets its

state to view-changing and stops responding to operations for the transaction.

128

3. ¿e decide function for CoordinatorChange returns the biggest v returned by the replicas.

4. Once CoordinatorChange returns successfully, the replica sends StartCoordinatorView(vnew),

where vnew is the returned view number from CoordinatorChange, as an IR inconsistent oper-

ation to all participant shards, including its own.

5. Any replica that receives StartCoordinatorView checks if vnew is higher or equal to its current

view. If so, the replica updates its current view number and begins accepting Prepare, Commit

and Abort from the active backup coordinator designated by the new view. If the replica is in

the backup shard, it can set its state back to normal.

6. As soon as the new backup coordinator executes StartCoordinatorView for the view where it

is the designated backup coordinator, it begins the cooperative termination protocol.

¿e Merge function for CoordinatorChange preserves the consensus result if it is bigger than or

equal to the current view number at the leader during synchronization. ¿e Sync function for

CoordinatorChange sets the replica state to view-changing if the consensus result is larger than

the replica’s current view number. ¿e Sync function for StartCoordinatorView just executes the

function: it updates the replica’s current view number if vnew is greater than or equal to it and sets the

state back to normal if the replica is in the backup shard.

¿e backup coordination protocol executed by the active coordinator is similar to that described

by Bernstein [29], with changes to accommodate IR and TAPIR.¿emost notable changes are that the

backup coordinators do not propose timestamps. If the client successfully prepared the transaction at

a timestamp t (i.e., achieved at least f +1 prepare-ok in every participant shard), then the transaction
will commit at t. Otherwise, the backup coordinator will eventually abort the transaction.

Next, in Bernstein’s algorithm, any single participant can abort the transaction if they have not

yet voted (i.e., replied to a coordinator). However, with IR, no single replica can abort the transaction

without information about the state of the other replicas in the shard. As a result, replicas return a

no-vote response and add the transaction to their no-vote-list. Once a replica adds a transaction to

the no-vote-list, it will always respond no-vote to Prepare operations. Eventually, all replicas in

129

tapir-recovery-decide(resul ts)
1 if abort ∈ resul ts
2 return abort if count(no-vote, resul ts) ≥ f + 1
3 return abort

4 if count(prepare-ok, resul ts) ≥ f + 1
5 return prepare-ok

6 return retry

Figure 4.13: TAPIR’s decide function for Prepare on coordinator recovery. IR runs this if replicas

return di�erent results on Prepare. ¿is function di�ers from the normal case execution decide

because it is not safe to return abort unless it is sure the original coordinator did not receive

prepare-ok.

the shard will either converge to a response (i.e., prepare-ok, abort) to the original coordinator’s

Prepare or to a no-vote response. TAPIR’s modi�ed cooperative termination protocol proceeds as

follows:

1. ¿e backup coordinator polls the participants with Prepare with no proposed timestamp

by invoking Prepare as a consensus operation in IR with the decide function outlined in

Figure 4.13.

2. Any replica that receives Prepare with no propose timestamp, returns prepare-ok if it has

committed or prepared the transaction, abort if it has received an Abort for the transaction

or committed a con�icting transaction and no-vote if it does not have the transaction in its

prepared-list or txn-log. If the replica returns no-vote, it adds the transaction to its no-vote-list.

3. ¿e coordinator continues to send Prepare as an IR operation until it either receives a abort

or prepare-ok from all participant shards.

130

4. If all participant shards return prepare-ok, the coordinator sends Commit; otherwise, it sends

Abort.

Assuming f + 1 replicas are up in each participant shard and shards are able to communicate, this pro-
cess will eventually terminate with a backup coordinator sending Commit or Abort to all participants.

We must also incorporate the no-vote into our Merge and Sync handlers for Prepare. We make

the following changes to Merge for the �nal function shown in Figure 4.14: (lines 5-6) delete any

tentative no-votes from the no-vote-list at the leader for consistency, (lines 10-11) return no-vote

without running tapir-occ-check if the transaction is already in the no-vote-list because any result

to the original Prepare could not have succeeded, (lines 18-19) do the same for operations without

majority result where the original coordinator’s Prepare de�nitely did not succeed. If the consensus

result to the Prepare is no-vote in Sync, we add transactions to the no-vote-list and remove it from

the prepared-list, as shown in lines 11-12 of Figure 4.15.

4.4.3 Correctness

To prove correctness, we show that TAPIR maintains the following properties3 given up to f failures

in each replica group and any number of client failures:

• Isolation.¿ere exists a global linearizable ordering of committed transactions.

• Atomicity. If a transaction commits at any participating shard, it commits at them all.

• Durability. Committed transactions stay committed, maintaining the original linearizable

order.

Appendix B gives a TLA+ [118] speci�cation for TAPIR with IR, which we have model-checked for

correctness.

3We do not prove database consistency, as it depends on application invariants; however, strict serializability is
su�cient to enforce consistency.

131

tapir-merge(d , u)
1 for ∀op ∈ d ∪ u

2 txn = op.args. txn

3 if txn. id ∈ prepared-list
4 delete(prepared-list, txn. id)
5 if txn. id ∈ no-vote-list
6 delete(no-vote-list, txn. id)
7 for op ∈ d
8 txn = op.args. txn

9 timestamp = op.args. timestamp

10 if txn. id ∈ no-vote-list
11 R[op].result = no-vote

12 elseif txn. id /∈ txn-log and op.result == prepare-ok
13 R[op].result = tapir-occ-check(txn, timestamp)
14 else

15 R[op].result = op.result

16 for op ∈ u
17 txn = op.args. txn

18 if txn. id ∈ no-vote-list
19 R[op].result = no-vote

20 else

21 timestamp = op.args. timestamp

22 R[op].result = tapir-occ-check(txn, timestamp)
23 return R

Figure 4.14: TAPIR’s merge function. IR runs this function at the leader on synchronization and

recovery. ¿is version handles no-vote results.

132

tapir-sync(R)
1 for ∀op ∈ R
2 if op /∈ r or op.result ≠ r[op].result
3 txn = op.args. txn

4 timestamp = op.args. timestamp

5 if op. func == Prepare

6 if op.result == prepare-ok

7 if txn. id /∈ prepared-list and txn. id /∈ txn-log
8 prepared-list[txn. id] = timestamp

9 elseif txn. id ∈ prepared-list
10 delete(prepared-list, txn. id)
11 if op.result == no-vote and txn. id /∈ txn-log
12 no-vote-list[txn. id] = timestamp

13 else

14 txn-log[txn. id]. txn = txn

15 txn-log[txn. id]. timestamp = timestamp

16 if op. func == Commit

17 txn-log[txn. id]. status = committed

18 else

19 txn-log[txn. id]. status = aborted

20 if txn. id ∈ prepared-list
21 delete(prepared-list, txn. id)

Figure 4.15: TAPIR’s function for synchronizing inconsistent replica state. ¿is version handles

no-vote results.

133

Isolation

For correctness, we must show that any two con�icting transactions, A and B, that violate the lineariz-

able transaction ordering cannot both commit. If A and B have a con�ict, then there must be at least

one common shard that is participating in both A and B. We show that, in that shard, Prepare(A)
and Prepare(B) cannot both return prepare-ok, so one transaction must abort.

In the common shard, IR’s visibility property (P2) guarantees that Prepare(A) must be visible to

Prepare(B) (i.e., executes �rst at one replica out of every f + 1 quorum) or Prepare(B) is visible to
Prepare(A). Without loss of generality, suppose that Prepare(A) is visible to Prepare(B) and the
group returns prepare-ok to Prepare(A). Any replica that executes tapir-occ-check for both A

and B will not return prepare-ok for both, so at least one replica out of any f + 1 quorum will not

return prepare-ok to Prepare(B). IR will not get a fast quorum of matching prepare-ok results

for Prepare(B), and TAPIR’s decide function will not return prepare-ok because it will never get

the f + 1 matching prepare-ok results that it needs. ¿us, IR will never return a consensus result

of prepare-ok for Prepare(B). ¿e same holds if Prepare(B) is visible to Prepare(A) and the
group returns prepare-ok to Prepare(B). ¿us, IR will never return a successful consensus result

of prepare-ok to executing both Prepare(A) and Prepare(B) in the common participant shard
and TAPIR will not be able to commit both transactions.

Further, once decided, the successful consensus results for Prepare(A) and Prepare(B) will
persist in the record of at least one replica out of every quorum, unless it has been modi�ed by the

application through Merge. TAPIR will never change another result to a prepare-ok, so the shard will

never respond prepare-ok to both transactions. IR will ensure that the successful consensus result is

eventually Sync’d at all replicas. Once a TAPIR replica prepared a transaction, it will continue to return

prepare-ok until it receives a Commit or Abort for the transaction. As a result, if the shard returned

prepare-ok as a successful consensus result to Prepare(A), then it will never allow Prepare(B) to
also return prepare-ok (unless A aborts), ensuring that B is never able to commit. ¿e opposite also

holds true.

134

Atomicity

If a transaction commits at any participating shard, the TAPIR client must have received a successful

prepare-ok from every participating shard on Prepare. Barring failures, it will ensure that Commit

eventually executes successfully at every participant. TAPIR replicas always execute Commit, even

if they did not prepare the transaction, so Commit will eventually commit the transaction at every

participant if it executes at one participant.

If the coordinator fails, then at least one replica in a participant shard will detect the failure and

initiate the coordinator recovery protocol. Assuming no more than f simultaneous failures in the

backup shard, the coordinator change protocol will eventually pick a new active backup coordinator

from the backup shard. At this point, the participants will have stopped processing operations from

the client and any previous backup coordinators.

Backup coordinators do not propose timestamps, so if any replica in a participant shard received

a Commit, then the client’s Preparemust have made it into the operation set of every participant shard

with prepare-ok as the consensus result. IR’s consensus result and eventual consistency properties

(P3 and P4) ensure that the prepare-ok will eventually be applied at all replicas in every participant

shard and TAPIR ensures that successful prepare-ok results are not changed in Merge (as shown

above). Once a TAPIR replica applies prepare-ok, it will continue to return prepare-ok, so once

replicas in participant groups have stopped processing operations from previous coordinators, all non-

failed replicas in all shards will eventually return prepare-ok. As a result, the backup coordinator

must eventually receive prepare-ok as well from all participants.

In themeantime, the backup coordinator is guaranteed to not receive an abort from a participant

shard. A participant shard will only return an abort if: (1) a con�icting transaction committed, (2) a

majority of the replicas return no-vote because they did not have a record of the transaction, or (3)

the transaction was aborted on the shard. Case (1) is not possible because the con�icting transaction

could not have also received a successful consensus result of prepare-ok (based on our isolation

proof) and IR’s consensus result property (P3) ensures that the con�icting transaction could never get

a prepare-ok consensus result, so the con�icting transaction cannot commit. Case (2) is not possible

135

because the client could not have received prepare-ok as a consensus result if a majority of the

replicas do not have the transaction in their prepared-list and IR’s P3 and P4 ensures the transaction

eventually makes its way into the prepared-list of every replica. Case (3) is not possible because the

client could not have sent Abort if it got prepare-ok from all participant shards and no previous

backup coordinator could have sent Abort because cases (1) and (2) will never happen. As a result,

the backup coordinator will not abort the transaction.

Durability

For all committed transactions, either the client or a backup coordinator will eventually execute

Commit successfully as an IR inconsistent operation. IR guarantees that the Commit will never be lost

(P1) and every replica will eventually execute or synchronize it. On Commit, TAPIR replicas use the

transaction timestamp included in Commit to order the transaction in their log, regardless of when

they execute it, thus maintaining the original linearizable ordering. If there are no coordinator failures,

a transaction would eventually be �nalized through an IR inconsistent operation (Commit/Abort),

which ensures that the decision would never be lost. As described above, for coordinator failures, the

coordinator recovery protocol ensures that a backup coordinator would eventually send Commit or

Abort to all participants.

4.5 TAPIR Extensions

We now describe four useful extensions to TAPIR.

4.5.1 Read-only Transactions

Since it uses amulti-versioned store, TAPIR easily supports globally-consistent read-only transactions

at a timestamp. However, since TAPIR replicas are inconsistent, it is important to ensure that: (1)

reads are up-to-date and (2) later write transactions do not invalidate the reads. To achieve these

properties, TAPIR replicas keep a read timestamp for each object.

TAPIR’s read-only transactions have a single round-trip fast path that sends the Read to only

136

one replica. If that replica has a validated version of the object – where the write timestamp precedes

the snapshot timestamp and the read timestamp follows the snapshot timestamp – we know that

the returned object is valid, because it is up-to-date, and will remain valid, because it will not be

overwritten later. If the replica lacks a validated version, TAPIR uses the slow path and executes

a QuorumRead through IR as an inconsistent operation. A QuorumRead updates the read timestamp,

ensuring that at least f + 1 replicas do not accept writes that would invalidate the read.
¿e protocol for read-only transactions follows:

1. ¿e TAPIR client chooses a snapshot timestamp for the transaction; for example, the client’s

local time.

2. ¿e client sends Read(key,version), where key is what the application wants to read and version

is the snapshot timestamp.

3. If the replica has a validated version of the object, it returns it. Otherwise, it returns a failure.

4. If the client could not get the value from the replica, it executes a QuorumRead(key,version)

through IR as an inconsistent operation.

5. Any replica that receives QuorumRead returns the latest version of the object from the data store.

It also writes the Read to the transaction log and updates the data store to ensure that it will

not prepare for transactions that would invalidate the Read.

6. ¿e client returns the object with the highest timestamp to the application.

As a quick sketch of correctness, it is always safe to read a version of the key that is validated at

the snapshot timestamp.¿e version will always be valid at the snapshot timestamp because the write

timestamp for the version is earlier than the snapshot timestamp and the read timestamp is a er

the snapshot timestamp. If the replica does not have a validated version, the replicated QuorumRead

ensures that: (1) the client gets the latest version of the object (because at least 1 of any f + 1 replicas

137

must have it), and (2) a later write transaction cannot overwrite the version (because at least 1 of the

f + 1 QuorumRead replicas will block it).
Since TAPIR also uses loosely synchronized clocks, it could be combinedwith Spanner’s algorithm

for providing externally consistent read-only transactions as well. ¿is combination would require

Spanner’s TrueTime technology and waits at the client for the TrueTime uncertainty bound.4

4.5.2 Serializability

TAPIR is restricted in its ability to accept transactions out of order because it provides linearizability.

¿us, TAPIR replicas cannot accept writes that are older than the last write for the same key, and

they cannot accept reads of older versions of the same key.

However, if TAPIR’s guarantees were weakened to serializability, then it can then accept proposed

timestamps any time in the past as long as they respect serializable transaction ordering. ¿is

optimization requires tracking the timestamp of the transaction that last read and wrote each version.

With this optimization, TAPIR can now accept: (1) reads of past versions, as long as the read

timestamp precedes the write timestamp of the next version, and (2) writes in the past (Tomas Write

Rule), as long as the write timestamp follows the read timestamp of the previous version and precedes

the write timestamp of the next version.

4.5.3 Synchronous Log Writes

Given the ability to synchronously log to durable storage (e.g. hard disk, NVRAM), we can reduce

TAPIR’s quorum requirements. As long as we can recover the log a er failures, we can reduce the

replica group size to 2 f + 1 and reduce all consensus and synchronization quorums to f + 1.

4While TAPIR provides external consistency for read-write transactions regardless of clock skew, this read-only
protocol would provide linearizability guarantees only if the clock skew did not exceed the TrueTime bound, like
Spanner. [48]

138

4.5.4 Retry Timestamp Selection

A client can increase the likelihood that participant replicas will accept its proposed timestamp by

proposing a very large timestamp; this decreases the likelihood that the participant replicas have

already accepted a higher timestamp. ¿us, to decrease the chances of retrying forever, clients can

exponentially increase their proposed timestamp on each retry.

4.5.5 Tolerating Very High Skew

If there is signi�cant clock skew between servers and clients, TAPIR can use waits at the participant

replicas to decrease the likelihood that transactions will arrive out of timestamp order. On receiving

each Preparemessage, the participant replica can wait (for the error-bound period) to see if other

transactions with smaller timestamps will arrive. A er the wait, the replica can process transactions in

timestamp order. ¿is wait increases the chances that the participant replica can process transactions

in timestamp order and decreases the number of transactions that it will have to reject for arriving

out of order.

4.6 Evaluation

In this section, our experiments demonstrate the following:

• TAPIR provides better latency and throughput than conventional transaction protocols in

both the datacenter and wide-area environments.

• TAPIR’s abort rate scales similarly to other OCC-based transaction protocols as contention

increases.

• Clock synchronization su�cient for TAPIR’s needs is widely available in both datacenter and

wide-area environments.

• TAPIR provides performance comparable to systems with weak consistency guarantees and

no transactions.

139

4.6.1 Experimental Setup

We ran our experiments on Google Compute Engine [80] (GCE) with VMs spread across 3 geo-

graphical regions – US, Europe and Asia – and placed in di�erent availability zones within each

geographical region. Each server has a virtualized, single core 2.6 GHz Intel Xeon, 8 GB of RAM and

1 Gb NIC.

Testbed Measurements

As TAPIR’s performance depends on clock synchronization and round-trip times, we �rst present

latency and clock skew measurements of our test environment. As clock skew increases, TAPIR’s

latency increases and throughputdecreases because clientsmayhave to retrymore Prepare operations.

It is important to note that TAPIR’s performance depends on the actual clock skew, not a worst-case

bound like Spanner [48].

We measured the clock skew by sending a ping message with timestamps taken on either end. We

calculate skew by comparing the timestamp taken at the destination to the one taken at the source

plus half the round-trip time (assuming that network latency is symmetric). Table 4.1 reports the

average skew and latency between the three geographic regions. Within each region, we average over

the availability zones. Our VMs bene�t from Google’s reliable wide-area network infrastructure;

although we use UDP for RPCs over the wide-area, we saw negligible packet drops and little variation

in round-trip times.

¿e average RTT between US-Europe was 110 ms; US-Asia was 165 ms; Europe-Asia was 260 ms.

We found the clock skew to be low, averaging between 0.1 ms and 3.4 ms, demonstrating the feasibility

of synchronizing clocks in the wide area. However, there was a long tail to the clock skew, with

the worst case clock skew being around 27 ms – making it signi�cant that TAPIR’s performance

depends on actual rather than worst-case clock skew. As our measurements show, the skew in this

environment is low enough to achieve good performance.

140

Table 4.1: RTTs and clock skews between Google Compute VMs.

Latency (ms) Clock Skew (ms)

US Europe Asia US Europe Asia

US 1.2 111.3 166.5 3.4 1.3 1.86

Europe – 0.8 261.8 – 0.1 1.9

Asia – – 10.8 – – .3

Implementation

We implemented TAPIR in a transactional key-value storage system, called tapir-kv. Our prototype

consists of 9094 lines of C++ code, not including the testing framework.

We also built two comparison systems. ¿e �rst, occ-store, is a “standard” implementation of

2PC and OCC, combined with an implementation of Multi-Paxos [119]. Like TAPIR, occ-store

accumulates a read and write set with read versions at the client during execution and then runs

2PC with OCC checks to commit the transaction. occ-store uses a centralized timestamp server to

generate transaction timestamps, which we use to version data in the multi-versioned storage system.

We veri�ed that this timestamp server was not a bottleneck in our experiments.

Our second system, lock-store is based on the Spanner protocol [48]. Like Spanner, it uses

2PC with S2PL and Multi-Paxos. ¿e client acquires read locks during execution at the Multi-Paxos

leaders and bu�ers writes. On Prepare, the leader replicates these locks and acquires write locks.

We use loosely synchronized clocks at the leaders to pick transaction timestamps, from which the

coordinator chooses the largest as the commit timestamp. We use the client as the coordinator, rather

than one of the Multi-Paxos leaders in a participant shard, for a more fair comparison with tapir-kv.

Lacking access to TrueTime, we set the TrueTime error bound to 0, eliminating the need to wait out

clock uncertainty and thereby giving the bene�t to this protocol.

141

Table 4.2: Transaction pro�le for Retwis workload.

Transaction Type # gets # puts workload %

Add User 1 3 5%

Follow/Unfollow 2 2 15%

Post Tweet 3 5 30%

Load Timeline rand(1,10) 0 50%

Workload

We use two workloads for our experiments. We �rst test using a synthetic workload based on the

Retwis application [122]. Retwis is an open-source Twitter clone designed to use the Redis key-value

storage system [173]. Retwis has a number of Twitter functions (e.g., add user, post tweet, get timeline,

follow user) that perform Puts and Gets on Redis. We treat each function as a transaction, and

generate a synthetic workload based on the Retwis functions as shown in Table 4.2.

Our second experimental workload is YCSB+T [58], an extension of YCSB [46] – a commonly-

used benchmark for key-value storage systems. YCSB+T wraps database operations inside simple

transactions such as read, insert or read-modify-write. However, we use our Retwis benchmark for

many experiments because it is more sophisticated: transactions are more complex – each touches

2.5 shards on average – and longer – each executes 4-10 operations.

4.6.2 Single Datacenter Experiments

We begin by presenting tapir-kv’s performance within a single datacenter. We deploy tapir-kv and

the comparison systems over 10 shards, all in the US geographic region, with 3 replicas for each shard

in di�erent availability zones. We populate the systems with 10 million keys and make transaction

requests with a Zipf distribution (coe�cient 0.75) using an increasing number of closed-loop clients.

142

 0

 2

 4

 6

 8

 10

 0 6000 12000 18000

L
at

en
cy

 (
m

s)

Throughput (transactions/sec)

OCC-STORE
LOCK-STORE

TAPIR-KV

Figure 4.16: TAPIR-KV datacenter comparison (Zipf coe�cient 0.75). We plot the average Retwis

transaction Latency versus throughput.

Figure 4.16 shows the average latency for a transaction in our Retwis workload at di�erent

throughputs. At low o�ered load, tapir-kv has lower latency because it is able to commit transactions

in a single round-trip to all replicas, whereas the other systems need two; its commit latency is thus

reduced by 50%. However, Retwis transactions are relatively long, so the di�erence in transaction

latency is relatively small.

Compared to the other systems, tapir-kv is able to provide roughly 3× the peak throughput,
which stems directly from IR’s weak guarantees: it has no leader and does not require cross-replica

coordination. Even with moderately high contention (Zipf coe�cient 0.75), tapir-kv replicas are

able to inconsistently execute operations and still agree on ordering for transactions at a high rate.

4.6.3 Wide-Area Latency

For wide-area experiments, we placed one replica from each shard in each geographic region. For

systems with leader-based replication, we �x the leader’s location in the US and move the client

between the US, Europe and Asia. Figure 4.17 gives the average latency for Retwis transactions using

the same workload as in previous section.

143

 0

 100

 200

 300

 400

 500

 600

 700

OCC-STORE LOCK-STORE TAPIR-KV

L
at

en
cy

 (
m

s)
USA

Europe

Asia

Figure 4.17: TAPIR-KV wide-area evaluation.We plot the average wide-area latency for Retwis trans-

actions with the leader located in the US and client in US, Europe or Asia.

When the client shares a datacenter with the leader, the comparison systems are faster than

tapir-kv because tapir-kv must wait for responses from all replicas, which takes 160 ms to Asia,

while occ-store and lock-store can commit with a round-trip to the local leader and one other

replica, which is 115 ms to Europe.

When the leader is in a di�erent datacenter, lock-store su�ers because it must go to the leader

on Read for locks, which takes up to 160 ms from Asia to the US, while occ-store can go to a local

replica on Read like tapir-kv. In our setup tapir-kv takes longer to Commit, as it has to contact

the furthest replica, and the RTT between Europe and Asia is more expensive than two round-trips

between US to Europe (likely because Google’s tra�c goes through the US). In fact, in this setup,

IR’s slow path, at two RTT to the two closest replicas, is faster than its fast path, at one RTT to the

furthest replica. We do not implement the optimization of running the fast and slow paths in parallel,

which could provide better latency in this case.

144

 0.01

 0.1

 1

 10

 100

 0.5 0.6 0.7 0.8 0.9 1

A
bo

rt
 R

at
e

(p
er

ce
nt

ag
e)

Zipf Coefficient

OCC-STORE
TAPIR-KV

Figure 4.18: TAPIR-KV abort rates.We plot abort rates at varying Zipf co-e�cients with a constant

load of 5,000 transactions/second in a single datacenter.

4.6.4 Abort and Retry Rates

TAPIR is an optimistic protocol, so transactions can abort due to con�icts, as in other OCC systems.

Moreover, TAPIR transactions can also be forced to abort or retry when con�icting timestamps are

chosen due to clock skew. We measure the abort rate of tapir-kv compared to occ-store, a conven-

tional OCC design, for varying levels of contention (varying Zipf coe�cients). ¿ese experiments

run in a single region with replicas in three availability zones. We supply a constant load of 5,000

transactions/second.

With a uniform distribution, both tapir-kv and occ-store have very low abort rates: 0.005%

and 0.04%, respectively. Figure 4.18 gives the abort rate for Zipf co-e�cients from 0.5 to 1.0. At

lower Zipf co-e�cients, tapir-kv has abort rates that are roughly an order of magnitude lower than

occ-store. TAPIR’s lower commit latency and use of optimistic timestamp ordering reduce the

time between Prepare and Commit or Abort to a single round-trip, making transactions less likely to

abort.

Under heavy contention (Zipf coe�cient 0.95), both tapir-kv and occ-store have moderately

high abort rates: 36% and 40%, respectively, comparable to otherOCC-based systems likeMDCC [113].

145

¿ese aborts are primarily due to the most popular keys being accessed very frequently. For these

workloads, locking-based systems like lock-store would make better progress; however, clients

would have to wait for extended periods to acquire locks.

TAPIR rarely needs to retry transactions due to clock skew. Even atmoderate contention rates, and

with simulated clock skew of up to 50 ms, we saw less than 1% TAPIR retries and negligible increase

in abort rates, demonstrating that commodity clock synchronization infrastructure is su�cient.

4.6.5 Comparison with Weakly Consistent Systems

We also compare tapir-kv with three widely-used eventually consistent storage systems, Mon-

goDB [146], Cassandra [117], and Redis [173]. For these experiments, we used YCSB+T [58], with a

single shard with 3 replicas and 1 million keys. MongoDB and Redis support master-slave replication;

we set them to use synchronous replication by setting WriteConcern to REPLICAS_SAFE in MongoDB

and the WAIT command [179] for Redis. Cassandra uses REPLICATION_FACTOR=2 to store copies of

each item at any 2 replicas.

Figure 4.19 demonstrates that the latency and throughput of tapir-kv is comparable to these

systems.We do not claim this to be an entirely fair comparison; these systems have features that tapir-

kv does not. At the same time, the other systems do not support distributed transactions – in some

cases, not even single-node transactions – while tapir-kv runs a distributed transaction protocol that

ensures strict serializability. Despite this, tapir-kv’s performance remains competitive: it outperforms

MongoDB, and has throughput within a factor of 2 of Cassandra and Redis, demonstrating that

strongly consistent distributed transactions are not incompatible with high performance.

4.7 Related Work

Inconsistent replication shares the same principle as past work on commutativity, causal consistency

and eventual consistency: operations that do not require ordering are more e�cient. TAPIR leverages

IR’s weak guarantees, in combination with optimistic timestamp ordering and optimistic concurrency

control, to provide semantics similar to past work on distributed transaction protocols but with both

lower latency and higher throughput.

146

 0

 2

 4

 6

 8

 10

 0 5000 10000 15000 20000

L
at

en
cy

 (
m

s)

Throughput (transactions/sec)

MongoDB
Cassandra

Redis
TAPIR-KV

Figure 4.19: TAPIR-KV comparison with weakly consistent storage systems.

4.7.1 Replication

Transactional storage systems currently rely on strict consistency protocols, like Paxos [119] and

VR [156]. ¿ese protocols enforce a strict serial ordering of operations and no divergence of replicas.

In contrast, IR is more closely related to eventually consistent replication protocols, like Bayou [199],

Dynamo [56] and others [116, 178, 117]. ¿e key di�erence is that applications resolve con�icts a er

they happen with eventually consistent protocols, whereas IR consensus operations allow applications

to decide con�icts and recover that decision later. As a result, applications can enforce higher-level

guarantees (e.g., mutual exclusion, strict serializability) that they cannot with eventual consistency.

IR is also related to replication protocols that avoid coordination for commutative operations

(e.g., Generalized Paxos [120], EPaxos [147]). ¿ese protocols are more general than IR because they

do not require application invariants to be pairwise. For example, EPaxos could support invariants

on bank account balances, while IR cannot. However, these protocols consider two operations to

commute if their order does not matter when applied to any state, whereas IR requires only that they

produce the same results in a particular execution. ¿is is a form of state-dependent commutativity

similar to SIM-commutativity [43]. As a result, in the example from Section 4.2.1, EPaxos would

consider any operations on the same lock to con�ict, whereas IR would allow two unsuccessful Lock

147

Table 4.3: Comparison of read-write transaction protocols in replicated transactional storage systems.

For each system, we list the replication protocol used, the message delays for reading and committing

a transaction, the number of messages processed by the bottlenecked node, and the isolation level

and transaction model provided by the system.

Transaction

System

Replication

Protocol

Read

Latency

Commit

Latency

Msg At

Bottleneck

Isolation

Level

Transaction

Model

Spanner [48] Multi-Paxos [119] 2 (leader) 4 2n + reads Strict Serializable Interactive

MDCC [113] Gen. Paxos [120] 2 (any) 3 2n Read-Committed Interactive

Repl. Commit [134] Paxos [119] 2n 4 2 Serializable Interactive

CLOCC [5, 127] VR [156] 2 (any) 4 2n Serializable Interactive

Lynx [222] Chain Repl. [209] – 2n 2 Serializable Stored procedure

TAPIR IR 2 (to any) 2 2 Strict Serializable Interactive

operations to the same lock to commute.

4.7.2 Distributed Transactions

A technique similar to optimistic timestamp ordering was �rst explored by ¿omas [201], while

CLOCC [5] was the �rst to combine it with loosely synchronized clocks. We extend¿omas’s algo-

rithm to: (1) support multiple shards, (2) eliminate synchronous disk writes, and (3) ensure availability

across coordinator failures. Spanner [48] and Granola [50] are two recent systems that use loosely

synchronized clocks to improve performance for read-only transactions and independent transac-

tions, respectively. TAPIR’s use of loosely synchronized clocks di�ers from Spanner’s in two key

ways: (1) TAPIR depends on clock synchronization only for performance, not correctness, and (2)

TAPIR’s performance is tied to the actual clock skew, not TrueTime’s worst-case estimated bound.

Spanner’s approach for read-only transactions complements TAPIR’s high-performance read-write

transactions, and the two could be easily combined.

148

CLOCC and Granola were both combined with VR [127] to replace synchronous disk writes

with in-memory replication. ¿ese combinations still su�er from the same redundancy – enforcing

ordering both at the distributed transaction and replication level – that we discussed in Section 4.1.

Other layered protocols, like the examples shown in Table 4.3, have a similar performance limitation.

Some previous work included in Table 4.3 improves throughput (e.g., Warp [65], Transaction

Chains [222], Tango [23]), while others improve performance for read-only transactions (e.g., Mega-

Store [22], Spanner [48]) or other limited transaction types (e.g., Sinfonia’s mini-transactions [7],

Granola’s independent transactions [50], Lynx’s transaction chains [222], and MDCC’s commutative

transactions [113]) or weaker consistency guarantees [132, 188]. In comparison, TAPIR is the �rst trans-

action protocol to provide better performance (both throughput and latency) for general-purpose,

read-write transactions using replication.

4.8 Summary

¿is chapter demonstrates that it is possible to build distributed transactions with better performance

and strong consistency semantics by building on a replication protocol with no consistency. We

present inconsistent replication, a new replication protocol that provides fault tolerance without

consistency, and TAPIR, a new distributed transaction protocol that provides linearizable transactions

using IR. We combined IR and TAPIR in tapir-kv, a distributed transactional key-value storage

system. Our experiments demonstrate that TAPIR-KV lowers commit latency by 50% and increases

throughput by 3× relative to conventional transactional storage systems. In many cases, it matches
the performance of weakly-consistent systems while providing much stronger guarantees.

149

5 | Conclusion

Mobile/cloud applications are the most common user-facing applications today. However, much

like the �rst mainframe applications, programmers continue to build them without the bene�t of

general-purpose system abstractions. ¿is thesis presented a vision for a newmobile/cloud operating

system designed to meet the requirements of these modern applications.

We introduced three systems – Sapphire, Diamond and TAPIR – each designed to support

mobile/cloud applications with new abstractions and mechanisms. Sapphire presents a new form

of run-time management with Sapphire Objects as the basic unit of deployment and pluggable

Deployment Managers as customizable run-time management libraries. Diamond provides memory

management for mobile/cloud applications by supporting a new form of distributed shared data

types – reactive data types – and transactions that automatically and reliably propagate updates

to shared data with strong guarantees. TAPIR is a new storage system designed to meet the needs

of mobile/cloud applications for distributed transactions and low latency, giving programmers the

bene�t of both strong guarantees and good performance.

Together, these systems form the basis for a new mobile/cloud operating system. Like desktop

operating systems before them, this new OS simpli�es the development and management of new

applications, making it easier for programmers to build larger, more complex applications in the

future.

150

5.1 Looking Forward: ¿e Path to Adoption

A crucial question for any researcher is the path to adoption for their research. Unfortunately for

operating system researchers, it has rarely been easy to gain the momentum needed for the adoption

of a new OS. Issues like backward compatibility for existing applications and support for a variety of

existing hardware platforms make it almost impossible today for a new desktop operating system to

achieve a signi�cant user base.

Amobile/cloudOS avoidsmost of these issues. First, it does not require privilegedmode execution

or complete control over the entire machine. Mobile/cloud applications can bundle their OS along

with their code for installation on both mobile devices and cloud servers. Next, a mobile/cloud OS

needs no support for legacy desktop applications, and the traditional OS on each mobile device and

cloud server ensures that legacy mobile/cloud applications can run alongside the new OS. In fact,

many mobile/cloud OSes could be developed and adopted in parallel with little con�ict. Finally, the

traditional OS also uni�es a diversity of hardware platforms and devices. As a result, a mobile/cloud

OS needs to run only on a limited number of popular OSes that support today’s mobile devices and

cloud servers. In particular, almost all mobile devices run iOS or a variant of Android; thus, any

mobile/cloud OS would need to support just two mobile OSes.

While limited barriers have lead to the plethora of mobile/cloud systems today, barriers to adop-

tion still exist. ¿e �rst and most signi�cant is portability. Because mobile/cloud applications expect

to run and persist forever, they must be able to easily switch between systems if the system becomes

unsupported, too expensive or unable to meet the application’s need. ¿e solution to this problem

is standardization. Virtual machines and containers avoid portability issues by having a largely

standardized interface that lets programmers move them across systems when needed.

Today’s morass of mobile/cloud systems is ripe for standardization. POSIX was a signi�cant step

forward forUNIX-like operating systems because it enabled the development ofmany interchangeable

operating systems with di�erent features and hardware support. A similar standardized interface for a

distributedmobile/cloud OS would be an enormous step towards a world that is easier for application

programmers to navigate. Mobile/cloud programmers could �nally develop applications that are

151

agnostic to the mobile OS or hardware. Further, programmers could switch between mobile/cloud

operating systems as necessary, eliminating their worries about portability.

¿ere are other more practical barriers including: (1) incentives for programmers to use a

mobile/cloud OS instead of existing solutions, and (2) incentives for companies or communities to

buildmobile/cloudOSes.¿e former is not signi�cant; programmers todaydevelopnewmobile/cloud

applications at such a rapid rate that even were a small fraction of them use to an OS, the OS would

still have a signi�cant user base. Further, classes on developing mobile/cloud applications – always a

popular topic with start-up savvy undergraduates – could introduce mobile/cloud OSes to program-

mers. ¿e latter is a more signi�cant issue because it is unclear how to monetize such an OS (e.g., it

would not be sold with computers like a traditional OS). However, Docker has been successful thus

far in selling subscriptions for its container platform [103], so selling OS cloud services presents a

viable option.

5.2 Concluding Remarks

Mobile/cloud applications have literally de�ned a new generation of people, dubbed the iGen by a

recent book and Atlantic article [204]. Even as it becomes increasingly clear that new systems are

needed to support today’s applications, systems research continues to focus on the same types of

systems that it did 40 years ago (e.g., traditional operating systems, �le systems, distributed storage

systems). Instead, much of today’s innovations in systems are driven by start-ups and industry. ¿ey

build one-o� solutions to their immediate problems, which has lead to an ad-hoc collection of systems

that are impossible for programmers to navigate. In the past, it has always been researchers that

have the motivation and vision to design general-purpose systems with a principled and careful

approach (e.g., UNIX).¿us, today’s researchers must apply themselves to inventing new systems, not

re-designing old ones, if application programmers are to avoid being systems experts in the future.

152

Bibliography

[1] Nim, Feb 2016. https://en.wikipedia.org/wiki/Nim#¿e_100_game.

[2] 2Do. webpage, 2017. https://www.2doapp.com/.

[3] David Abrahams and Stefan Seefeld. Boost C++ libraries, 2015. http://www.boost.org/doc/libs/
1_60_0/libs/python/doc/html/index.html.

[4] Atul Adya, Gregory Cooper, Daniel Myers, and Michael Piatek. ¿ial�: A client noti�cation
service for internet-scale applications. In Proceedings of the ACM Symposium on Operating
System Principles (SOSP), 2011.

[5] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari. E�cient optimistic con-
currency control using loosely synchronized clocks. Proceedings of ACM SIGMODConference,
1995.

[6] Nitin Agrawal, Akshat Aranya, and Cristian Ungureanu. Mobile data sync in a blink. In
Proceedings of the USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage),
2013.

[7] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos Karamanolis.
Sinfonia: a new paradigm for building scalable distributed systems. In Proceedings of the ACM
Symposium on Operating System Principles (SOSP), 2007.

[8] Steph Alvos-Bock. ¿e convergence of iOS and OSX user interface design, July 2015. http:
//www.solstice-mobile.com/blog/the-convergence-of-ios-and-os-x-user-interface-design.

[9] Amazon. Amazon Elastic Cloud Compute, 2013. http://aws.amazon.com/ec2/.

[10] webpage. https://aws.amazon.com/elasticbeanstalk/.

[11] webpage. https://aws.amazon.com/lambda/.

https://en.wikipedia.org/wiki/Nim#The_100_game
https://www.2doapp.com/
http://www.boost.org/doc/libs/1_60_0/libs/python/doc/html/index.html
http://www.boost.org/doc/libs/1_60_0/libs/python/doc/html/index.html
http://www.solstice-mobile.com/blog/the-convergence-of-ios-and-os-x-user-interface-design
http://www.solstice-mobile.com/blog/the-convergence-of-ios-and-os-x-user-interface-design
 http://aws.amazon.com/ec2/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/lambda/

153

[12] Amazon retail. webpage, 2017. https://www.amazon.com/.

[13] Apache. Apache¿ri , 2013. http://thri .apache.org.

[14] Apple. ¿e Swi programming language, 2016. https://developer.apple.com/library/
ios/documentation/Swi /Conceptual/Swi _Programming_Language/#//apple_ref/doc/uid/
TP40014097-CH3-ID0.

[15] Apple push noti�cation service, 2015. https://developer.apple.com/library/ios/documentation/
NetworkingInternet/Conceptual/RemoteNoti�cationsPG/Chapters/ApplePushService.html.

[16] Krzysztof Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

[17] webpage. https://azure.microso .com/en-us/services/app-service/.

[18] webpage. https://azure.microso .com/en-us/services/container-service/.

[19] webpage. https://aws.amazon.com/ecs/details/.

[20] webpage. https://azure.microso .com/en-us/services/functions/.

[21] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica.
Highly available transactions: Virtues and limitations. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), 2014.

[22] Jason Baker, Chris Bond, James C Corbett, J.J. Furman, Andrey Khorlin, James Larson, Jean-
Michel Léon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services. In Proceedings of CIDR, 2011.

[23] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran, Michael
Wei, John D Davis, Sriram Rao, Tao Zou, and Aviad Zuck. Tango: Distributed data structures
over a shared log. In Proceedings of the ACM Symposium on Operating System Principles
(SOSP), 2013.

[24] Basil for iOS. webpage, 2017. http://basil-app.com/.

[25] D.S. Batoory, J.R. Barnett, Jorge F. Garza, Kenneth Paul Smith, K. Tsukuda, B.C. Twichell,
and T.E. Wise. Genesis: An extensible database management system. IEEE Transactions on
So ware Engineering, 1988.

[26] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani, Praveen Yala-
gandula, and Jiandan Zheng. Practi replication. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2006.

https://www.amazon.com/
http://thrift.apache.org
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/#//apple_ref/doc/uid/TP40014097-CH3-ID0
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/#//apple_ref/doc/uid/TP40014097-CH3-ID0
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/#//apple_ref/doc/uid/TP40014097-CH3-ID0
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://azure.microsoft.com/en-us/services/app-service/
https://azure.microsoft.com/en-us/services/container-service/
https://aws.amazon.com/ecs/details/
https://azure.microsoft.com/en-us/services/functions/
http://basil-app.com/

154

[27] Nalini Moti Belaramani, Jiandan Zheng, Amol Nayate, Robert Soulé, Michael Dahlin, and
Robert Grimm. PADS: A policy architecture for distributed storage systems. In Proceedings of
the USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2009.

[28] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed shared memory based on
type-speci�c memory coherence. In Proceedings of ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPOPP), 1990.

[29] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison Wesley, 1987.

[30] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün Sirer, Marc E. Fiuczynski,
David Becker, Craig Chambers, and Susan Eggers. Extensibility safety and performance in the
SPIN operating system. In Proceedings of the ACM Symposium on Operating System Principles
(SOSP), 1995.

[31] Ken Birman and¿omas A. Joseph. Exploiting virtual synchrony in distributed systems. In
Proceedings of the ACM Symposium on Operating System Principles (SOSP), 1987.

[32] Jose A Blakeley, Per-Ake Larson, and Frank Wm Tompa. E�ciently updating materialized
views. In Proceedings of ACM SIGMOD Conference, 1986.

[33] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack
Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov, Dmitri Petrov, Lovro
Puzar, Yee Jiun Song, and Venkat Venkataramani. TAO: Facebook’s distributed data store for
the social graph. In Proceedings of USENIX Annual Technical Conference, 2013.

[34] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and JohnWilkes. Borg, omega,
and kubernetes. Communications of the ACM, April 2016.

[35] Mike Burrows. ¿eChubby lock service for loosely-coupleddistributed systems. InProceedings
of the USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2006.

[36] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and Jorgen ¿elin.
Orleans: cloud computing for everyone. In Proceedings of the ACM Symposium on Cloud
Computing (SOCC), 2011.

[37] John Callaham. Yes, windows 10 is the next version of windows phone. Windows Central,
Sept 2014. http://www.windowscentral.com/yes-windows-10-next-version-windows-phone.

[38] Michael J. Carey, David J. DeWitt, Joel E. Richardson, and Eugene J. Shekita. Object and
�le management in the EXODUS extensible database system. Computer Sciences Department,
University of Wisconsin, 1986.

http://www.windowscentral.com/yes-windows-10-next-version-windows-phone

155

[39] Sharma Chakravarthy. Sentinel: an object-oriented DBMS with event-based rules. In Pro-
ceedings of ACM SIGMOD Conference, 1997.

[40] Fay Chang, Je�rey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed
storage system for structured data. ACM Transactions on Computer Systems, 2008.

[41] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and Xin Zheng.
Secure web applications via automatic partitioning. In Proceedings of the ACM Symposium on
Operating System Principles (SOSP), 2007.

[42] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti.
CloneCloud: Elastic execution between mobile device and cloud. In Proceedings of the ACM
European Conference on Computer Systems (EuroSys), 2011.

[43] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris, and Eddie
Kohler. ¿e scalable commutativity rule: Designing scalable so ware for multicore processors.
In Proceedings of the ACM Symposium on Operating System Principles (SOSP), 2013.

[44] Kevin Conaway. Pyscrabble. http://pyscrabble.sourceforge.net/.

[45] Brian F Cooper, Raghu Ramakrishnan,Utkarsh Srivastava, Adam Silberstein, Philip Bohannon,
Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. Proceedings of the International Conference on Very Large Data Bases
(VLDB), 2008.

[46] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of the ACM Symposium on
Cloud Computing (SOCC), 2010.

[47] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web programming
without tiers. In Proceedings of the Symposium on FormalMethods for Components andObjects
(FMCO), 2006.

[48] James C. Corbett, Je�rey Dean,Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, SergeyMelnik, DavidMwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s globally-distributed
database. In Proceedings of the USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2012.

http://pyscrabble.sourceforge.net/

156

[49] Corona SDK, 2013. http://www.coronalabs.com/.

[50] James Cowling and Barbara Liskov. Granola: low-overhead distributed transaction coordina-
tion. In Proceedings of USENIX Annual Technical Conference, 2012.

[51] James Cowling, Dan R.K. Ports, Barbara Liskov, Raluca Ada Popa, and Abhijeet Gaikwad. Cen-
sus: Location-aware membership management for large-scale distributed systems. Proceedings
of USENIX Annual Technical Conference, 2009.

[52] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu, Ranveer
Chandra, and Paramvir Bahl. MAUI: making smartphones last longer with code o�oad. In
Proceedings of ACMConference onMobile Systems, Applications, and Services (MobiSys), 2010.

[53] Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramana, Praveen Yalagandula, and Jiandan
Zheng. PRACTI replication. In Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2006.

[54] Day One | A simple and elegant journal for iPhone, iPad, and Mac. webpage, 2017. http:
//dayoneapp.com/.

[55] DB-engine’s ranking of key-value stores, 10 2015. http://db-engines.com/en/ranking/key-value+
store.

[56] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: Amazon’s highly available key-value store. In Proceedings of the ACM Symposium
on Operating System Principles (SOSP), 2007.

[57] deepstream. deepstream.io: a scalable server for realtime web apps. https://deepstream.io/.

[58] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe Rohm. YCSB+T: Benchmarking
web-scale transactional databases. In Proceedings of IEEE International Conference on Data
Engineering Workshops (ICDEW), 2014.

[59] Diaro: Diary, Journal, Notes for iOS and Android. webpage, 2017. http://www.diaroapp.com/.

[60] Dan Diephouse and Paul Brown. Building a highly scalable, open source Twitter clone, 2009.
http://fr.slideshare.net/multifariousprb/building-a-highly-scalable-open-source-twitter-clone.

[61] Google Drive, 2016. http://drive.google.com.

[62] Dropbox, 2013. http://dropbox.com.

http://www.coronalabs.com/
http://dayoneapp.com/
http://dayoneapp.com/
http://db-engines.com/en/ranking/key-value+store
http://db-engines.com/en/ranking/key-value+store
https://deepstream.io/
http://www.diaroapp.com/
 http://fr.slideshare.net/multifariousprb/building-a-highly-scalable-open-source-twitter-clone
http://drive.google.com
http://dropbox.com

157

[63] eMarketer. Mobile game revenues to grow 16.5% in 2015, surpassing $3 billion, Feb 2015. http://
www.emarketer.com/Article/Mobile-Game-Revenues-Grow-165-2015-Surpassing-3-Billion/1012063.

[64] Dawson R. Engler, M. Frans Kaashoek, et al. Exokernel: An operating system architecture for
application-level resource management. In Proceedings of the ACM Symposium on Operating
System Principles (SOSP), 1995.

[65] Robert Escriva, Bernard Wong, and Emin GÃĳn Sirer. Warp: Multi-key transactions for
key-value stores. Technical report, Cornell, Nov 2013.

[66] Evernote. webpage, 2017. https://evernote.com/.

[67] Facebook. Wikipedia, 2017. https://en.wikipedia.org/wiki/Facebook.

[68] Roy¿omas Fielding. Architectural Styles and the Design of Network-based So ware Architec-
tures. PhD thesis, University of California, Irvine, 2000.

[69] Firebase, 2015. https://www.�rebase.com/.

[70] Michael J. Fischer, Nancy A. Lynch, and Michael S. Patterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

[71] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and Olin Shivers. ¿e Flux
OSKit: A substrate for kernel and language research. In Proceedings of the ACM Symposium
on Operating System Principles (SOSP), 1997.

[72] webpage. https://www.gamesparks.com/.

[73] Roxana Geambasu, Amit A Levy, Tadayoshi Kohno, Arvind Krishnamurthy, and Henry M.
Levy. Comet: An active distributed key-value store. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2010.

[74] Git, 2015. https://git-scm.com/.

[75] Google. Agera. https://github.com/google/agera.

[76] Google. Google App Engine developer’s guide, 2013. https://developers.google.com/appengine/
docs/.

[77] Google. Android standalone toolchain, 2016. http://developer.android.com/ndk/guides/
standalone_toolchain.html.

http://www.emarketer.com/Article/Mobile-Game-Revenues-Grow-165-2015-Surpassing-3-Billion/1012063
http://www.emarketer.com/Article/Mobile-Game-Revenues-Grow-165-2015-Surpassing-3-Billion/1012063
https://evernote.com/
https://en.wikipedia.org/wiki/Facebook
https://www.firebase.com/
https://www.gamesparks.com/
https://git-scm.com/
https://github.com/google/agera
 https://developers.google.com/appengine/docs/
 https://developers.google.com/appengine/docs/
http://developer.android.com/ndk/guides/standalone_toolchain.html
http://developer.android.com/ndk/guides/standalone_toolchain.html

158

[78] Google. Wikipedia, 2017. https://en.wikipedia.org/wiki/Google.

[79] Google App Engine. https://cloud.google.com/appengine/.

[80] Google Compute Engine. https://cloud.google.com/products/compute-engine/.

[81] Google Docs. Wikipedia, 2017. https://en.wikipedia.org/wiki/Google_Docs,_Sheets_and_Slides.

[82] webpage. https://cloud.google.com/functions/.

[83] 2013. https://developers.google.com/google-apps/marketplace/sso.

[84] Google web toolkit. https://developers.google.com/web-toolkit/, October 2012.

[85] Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke, Z Morley Mao, and Xu Chen. COMET:
Code o�oad by migrating execution transparently. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2012.

[86] Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM Transactions on
Database Systems, 2006.

[87] Grid Diary. webpage, 2017. http://griddiaryapp.com/en/.

[88] HAProxy: A reliable, high-performance TCP/HTTP load balancer, 2013. http://haproxy.1wt.eu/.

[89] Maurice Herlihy. Optimistic concurrency control for abstract data types. In Proceedings of the
ACM Symposium on Principles of Distributed Computing (PODC). ACM, 1986.

[90] Maurice Herlihy. Apologizing versus asking permission: Optimistic concurrency control for
abstract data types. ACM Transactions on Database Systems, 1990.

[91] Nathaniel Herman, Jeevana Priya Inala, Yihe Huang, Lillian Tsai, Eddie Kohler, Barbara Liskov,
and Liuba Shrira. Type-aware transactions for faster concurrent code. In eurosys, 2016.

[92] Todd Ho�. Play�sh’s social gaming architecture - 50 million monthly users and grow-
ing. In High Scalability Blog. High Scalability, Sept 2010. highscalability.com/blog/2010/9/21/
play�shs-social-gaming-architecture-50-million-monthly-user.html.

[93] Todd Ho�. How twitter stores 250 million tweets a day using mysql. In High Scal-
ability Blog. High Scalability, December 2011. http://highscalability.com/blog/2011/12/19/
how-twitter-stores-250-million-tweets-a-day-using-mysql.html.

https://en.wikipedia.org/wiki/Google
https://cloud.google.com/appengine/
https://cloud.google.com/products/compute-engine/
https://en.wikipedia.org/wiki/Google_Docs,_Sheets_and_Slides
https://cloud.google.com/functions/
https://developers.google.com/google-apps/marketplace/sso
 https://developers.google.com/web-toolkit/
http://griddiaryapp.com/en/
http://haproxy.1wt.eu/
highscalability.com/blog/2010/9/21/playfishs-social-gaming-architecture-50-million-monthly-user.html
highscalability.com/blog/2010/9/21/playfishs-social-gaming-architecture-50-million-monthly-user.html
http://highscalability.com/blog/2011/12/19/how-twitter-stores-250-million-tweets-a-day-using-mysql.html
http://highscalability.com/blog/2011/12/19/how-twitter-stores-250-million-tweets-a-day-using-mysql.html

159

[94] Todd Ho�. ¿e architecture that Twitter uses to deal with 150m active users,
300k qps, a 22 mb/s �rehose, and send tweets in under 5 seconds. In High
Scalability Blog. High Scalability, July 2013. http://highscalability.com/blog/2013/7/8/
the-architecture-twitter-uses-to-deal-with-150m-active-users.html.

[95] Todd Ho�. Why amazon retail went to a service oriented architecture. In
High Scalability Blog. High Scalability, July 2016. http://highscalability.com/blog/2016/7/13/
why-amazon-retail-went-to-a-service-oriented-architecture.html.

[96] Matthew Humphries. Ellen DeGeneres crashes Twitter with Oscar sel�e, 3 2014. http://www.
geek.com/mobile/ellen-degeneres-crashes-twitter-with-an-oscars-sel�e-1586464/.

[97] Galen C. Hunt and Michael L. Scott. ¿e coign automatic distributed partitioning system.
In Proceedings of the USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 1999.

[98] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. ZooKeeper: Wait-
free coordination for internet-scale systems. In Proceedings of USENIX Annual Technical
Conference, 2010.

[99] Apple iCloud, 2016. https://www.icloud.com/.

[100] Apache Incubator. Apache Usergrid. http://usergrid.apache.org/.

[101] Instagram. Wikipedia, 2017. https://en.wikipedia.org/wiki/Instagram.

[102] iWork. Wikipedia, 2017. https://en.wikipedia.org/wiki/IWork.

[103] Joab Jackson. Docker launches an enterprise edition, re�nes market strategy. ¿e New Stack,
March 2017. https://thenewstack.io/docker-launches-enterprise-edition-re�nes-market-strategy/.

[104] JavaCPP: ¿e missing bridge between Java and native C++. github, Mar 2016. https://github.
com/bytedeco/javacpp.

[105] Jetty web server. http://www.eclipse.org/jetty/.

[106] Roland Kuhn Jonas Boner, Dave Farley and Martin¿ompson. ¿e reactive manifesto, Sept
2014. http://www.reactivemanifesto.org/.

[107] Anthony D Joseph, Alan F de Lespinasse, Joshua A Tauber, David K Gi�ord, and M Frans
Kaashoek. Rover: a toolkit for mobile information access. In Proceedings of the ACM Sympo-
sium on Operating System Principles (SOSP), 1995.

http://highscalability.com/blog/2013/7/8/the-architecture-twitter-uses-to-deal-with-150m-active-users.html
http://highscalability.com/blog/2013/7/8/the-architecture-twitter-uses-to-deal-with-150m-active-users.html
http://highscalability.com/blog/2016/7/13/why-amazon-retail-went-to-a-service-oriented-architecture.html
http://highscalability.com/blog/2016/7/13/why-amazon-retail-went-to-a-service-oriented-architecture.html
http://www.geek.com/mobile/ellen-degeneres-crashes-twitter-with-an-oscars-selfie-1586464/
http://www.geek.com/mobile/ellen-degeneres-crashes-twitter-with-an-oscars-selfie-1586464/
https://www.icloud.com/
http://usergrid.apache.org/
https://en.wikipedia.org/wiki/Instagram
https://en.wikipedia.org/wiki/IWork
https://thenewstack.io/docker-launches-enterprise-edition-refines-market-strategy/
https://github.com/bytedeco/javacpp
https://github.com/bytedeco/javacpp
http://www.eclipse.org/jetty/
http://www.reactivemanifesto.org/

160

[108] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mobility in
the Emerald system. In Proceedings of the ACM Symposium on Operating System Principles
(SOSP), 1987.

[109] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy,Matthew Levine, andDaniel Lewin.
Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on
the world wide web. In Proceedings of the ACM Symposium on¿eory of Computing (STOC),
1997.

[110] Ryan King. Announcing snow�ake, June 2010. https://blog.twitter.com/engineering/en_us/a/
2010/announcing-snow�ake.html.

[111] James J Kistler and Mahadev Satyanarayanan. Disconnected operation in the coda �le system.
ACM Transactions on Computer Systems, 1992.

[112] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. ¿e Click
modular router. In Proceedings of the ACM Symposium on Operating System Principles (SOSP),
1999.

[113] Tim Kraska, Gene Pang, Michael J Franklin, Samuel Madden, and Alan Fekete. MDCC:
multi-data center consistency. In Proceedings of the ACM European Conference on Computer
Systems (EuroSys), 2013.

[114] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging system for log
processing. In Proceedings of NetDB, 2011.

[115] Hsiang-Tsung Kung and John T. Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems, 1981.

[116] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Providing high availability
using lazy replication. ACM Transactions on Computer Systems, 1992.

[117] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured storage system.
ACM SIGOPS Operating Systems Review, 2010.

[118] Leslie Lamport. ¿e temporal logic of actions. ACM Transactions on Programming Languages
and Systems, 1994.

[119] Leslie Lamport. Paxos made simple. ACM Sigact News, 2001.

[120] Leslie Lamport. Generalized consensus and Paxos. Technical Report 2005-33, Microso
Research, 2005.

https://blog.twitter.com/engineering/en_us/a/2010/announcing-snowflake.html
https://blog.twitter.com/engineering/en_us/a/2010/announcing-snowflake.html

161

[121] Leslie Lamport. Lower bounds for asynchronous consensus. Distributed Computing, 19(2):104–
125, October 2006.

[122] Costin Leau. Spring Data Redis - Retwis-J, 2013. http://docs.spring.io/spring-data/data-keyvalue/
examples/retwisj/current/.

[123] Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K. Aguilera, and Michael Wal�sh. Detect-
ing failures in distributed systems with the falcon spy network. In Proceedings of the ACM
Symposium on Operating System Principles (SOSP), 2011.

[124] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/mechanism separation in
Hydra. In Proceedings of the ACM Symposium on Operating System Principles (SOSP), 1975.

[125] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM Trans-
actions on Computer Systems, 1989.

[126] B. F. Lieuwen, N. Gehani, and R. Arlein. ¿e Ode active database: trigger semantics and
implementation. In Proceedings of International Conference on Data Engineering (ICDE), Feb
1996.

[127] Barbara Liskov,Miguel Castro, Liuba Shrira, and Atul Adya. Providing persistent objects in dis-
tributed systems. In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), 1999.

[128] Barbara Liskov and James Cowling. Viewstamped replication revisited, 2012.

[129] Barbara Liskov, Dorothy Curtis, Paul Johnson, and Robert Schei�er. Implementation of Argus.
In Proceedings of the ACM Symposium on Operating System Principles (SOSP), 1987.

[130] Jed Liu,Michael D. George, Krishnaprasad Vikram, Xin Qi, LucasWaye, and Andrew C. Myers.
Fabric: A platform for secure distributed computation and storage. In Proceedings of the ACM
Symposium on Operating System Principles (SOSP), 2009.

[131] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t settle
for eventual: Scalable causal consistency for wide-area storage with COPS. In Proceedings of
the ACM Symposium on Operating System Principles (SOSP), 2011.

[132] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t Settle
for Eventual: Scalable Causal Consistency for Wide-area Storage with COPS. In Proceedings
of the ACM Symposium on Operating System Principles (SOSP), 2011.

 http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
 http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/

162

[133] Jason Maassen, Rob Van Nieuwpoort, Ronald Veldema, Henri Bal, ¿ilo Kielmann, Ceriel
Jacobs, and Rutger Hofman. E�cient Java RMI for parallel programming. ACM Transactions
on Programming Languages and Systems, 2001.

[134] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and Amr El Ab-
badi. Low-latency multi-datacenter databases using replicated commit. Proceedings of the
International Conference on Very Large Data Bases (VLDB), 2013.

[135] Alessandro Margara and Guido Salvaneschi. We have a DREAM: Distributed reactive pro-
gramming with consistency guarantees. In Proceedings of ACMConference on Distributed and
Event-Based Systems (DEBS). ACM, 2014.

[136] Markets and Markets. Backend as a service (BaaS) market worth 28.10 billion USD by 2020.
http://www.marketsandmarkets.com/PressReleases/baas.asp.

[137] martypdx. Firebase data consistency across multiple nodes. Stack Over�ow, Apr 2015. http:
//stackover�ow.com/questions/29947898/�rebase-data-consistency-across-multiple-nodes.

[138] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information system based
on the XOR metric. In Proceedings of the USENIX International Workshop on Peer-to-Peer
Systems (IPTPS), 2002.

[139] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer
Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling innovation in campus
networks. ACM SIGCOMM Computer Communication Review, 2008.

[140] memcached, 2015. http://memcached.org/.

[141] Meteor, 2015. http://www.meteor.com.

[142] Microso O�ce Online. Wikipedia, 2017. https://en.wikipedia.org/wiki/O�ce_Online.

[143] Moblie HTML5, 2013. http://mobilehtml5.org.

[144] MobiRuby, 2013. http://mobiruby.org/.

[145] Mission Mode. New mobile apps revolutionize how organizations respond
to crises and operations issues, Aug 2014. http://www.missionmode.com/
new-mobile-apps-revolutionize-organizations-respond-crises-operations-issues/.

[146] MongoDB: A open-source document database, 2013. http://www.mongodb.org/.

http://www.marketsandmarkets.com/PressReleases/baas.asp
http://stackoverflow.com/questions/29947898/firebase-data-consistency-across-multiple-nodes
http://stackoverflow.com/questions/29947898/firebase-data-consistency-across-multiple-nodes
http://memcached.org/
http://www.meteor.com
https://en.wikipedia.org/wiki/Office_Online
http://mobilehtml5.org
http://mobiruby.org/
http://www.missionmode.com/new-mobile-apps-revolutionize-organizations-respond-crises-operations-issues/
http://www.missionmode.com/new-mobile-apps-revolutionize-organizations-respond-crises-operations-issues/
http://www.mongodb.org/

163

[147] Iulian Moraru, David G Andersen, and Michael Kaminsky. ¿ere is more consensus in
egalitarian parliaments. In Proceedings of the ACM Symposium on Operating System Principles
(SOSP), 2013.

[148] Mozilla. Kinto. http://kinto.readthedocs.org/en/latest/.

[149] Roi Mulia. Firebase - maintain/guarantee consistency. Stack Over�ow, Jan 2016. http://
stackover�ow.com/questions/34678083/�rebase-maintain-guarantee-data-consistency.

[150] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-bandwidth network �le
system. In Proceedings of the ACM Symposium on Operating System Principles (SOSP), 2001.

[151] My CookBook Online. webpage, 2017. http://mycookbook-android.com/site/.

[152] MySpace. webpage, 2017. https://www.myspace.com/.

[153] MySQL, 2013. http://www.mysql.com/.

[154] Christian Nester, Michael Philippsen, and Bernhard Haumacher. A more e�cient RMI for
Java. In Proceedings of the ACM Java Grande Conference, 1999.

[155] Node.js, 2013. http://nodejs.org/.

[156] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary copy method
to support highly-available distributed systems. In Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC), 1988.

[157] openio. openio.io: object storage grid for apps. http://openio.io/.

[158] Paprika Recipe Manager for iPad, iPhone, Mac, Android, and Windows. webpage, 2017. https:
//www.paprikaapp.com/.

[159] Parse, 2013. http://parse.com.

[160] Parse, 2015. http://www.parse.com.

[161] Dorian Perkins, Nitin Agrawal, Akshat Aranya, Curtis Yu, Younghwan Go, Harsha V Mad-
hyastha, and Cristian Ungureanu. Simba: tunable end-to-end data consistency for mobile
apps. In Proceedings of the ACM European Conference on Computer Systems (EuroSys), 2015.

[162] Michael Philippsen, Bernhard Haumacher, and Christian Nester. More e�cient serialization
and RMI for Java. Concurrency: Practice and Experience, 2000.

http://kinto.readthedocs.org/en/latest/
http://stackoverflow.com/questions/34678083/firebase-maintain-guarantee-data-consistency
http://stackoverflow.com/questions/34678083/firebase-maintain-guarantee-data-consistency
http://mycookbook-android.com/site/
https://www.myspace.com/
 http://www.mysql.com/
http://nodejs.org/
http://openio.io/
https://www.paprikaapp.com/
https://www.paprikaapp.com/
http://parse.com
http://www.parse.com

164

[163] webpage. https://playfab.com/.

[164] Wikipedia. https://en.wikipedia.org/wiki/Play�sh.

[165] Robey Pointer, N Kallen, E Ceaser, and J Kalucki. Introducing �ockdb, May 2010. https:
//blog.twitter.com/engineering/en_us/a/2010/introducing-�ockdb.html.

[166] Dan R. K. Ports, Austin T. Clements, Irene Zhang, Samuel Madden, and Barbara Liskov. Trans-
actional consistency and automatic management in an application data cache. In Proceedings
of the USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2010.

[167] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, andArvind Krishnamurthy. Design-
ing distributed systems using approximate synchrony in data center networks. In Proceedings
of the USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2015.

[168] PostgreSQL, 2013. http://www.postgresql.org/.

[169] Venugopalan Ramasubramanian, ¿omas L. Rodehe�er, Douglas B. Terry, Meg Walraed-
sullivan, Ted Wobber, Catherine C. Marshall, and Amin Vahdat. Cimbiosys: A platform for
content-based partial replication. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2009.

[170] React: A JavaScript library for building user interfaces. Github, 2016. https://facebook.github.io/
react/.

[171] ReactiveX: An api for asynchronous programming with observable streams, 2016. http://
reactivex.io/.

[172] Redis. Wait numslaves timeout. http://redis.io/commands/WAIT.

[173] Redis: Open source data structure server, 2013. http://redis.io/.

[174] Riak, 2015. http://basho.com/products/riak-kv/.

[175] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and rout-
ing for large-scale peer-to-peer systems. In Proceedings of the ACM/IFIP/USENIXMiddleware
Conference, 2001.

[176] Amazon S3, 2013. http://aws.amazon.com/s3/.

[177] Aki Saarinen, Matti Siekkinen, Yu Xiao, Jukka K Nurminen, Matti Kemppainen, and Pan Hui.
SmartDiet: o�oading popular apps to save energy. ACM SIGCOMM Computer Communica-
tion Review, 2012.

https://playfab.com/
https://en.wikipedia.org/wiki/Playfish
https://blog.twitter.com/engineering/en_us/a/2010/introducing-flockdb.html
https://blog.twitter.com/engineering/en_us/a/2010/introducing-flockdb.html
 http://www.postgresql.org/
https://facebook.github.io/react/
https://facebook.github.io/react/
http://reactivex.io/
http://reactivex.io/
http://redis.io/commands/WAIT
http://redis.io/
http://basho.com/products/riak-kv/
http://aws.amazon.com/s3/

165

[178] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Computing Surveys, 2005.

[179] Salvatore San�lippo. WAIT: synchronous replication for Redis. http://antirez.com/news/66,
December 2013.

[180] Margo I. Seltzer, Yasuhiro Endo, Christopher Small, and Keith A. Smith. Dealing with dis-
aster: Surviving misbehaved kernel extensions. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 1996.

[181] Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop: a language for programming the
web 2.0. In OOPSLA Companion, 2006.

[182] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Con�ict-free replicated
data types. In Proceedings of the International Symposium on Self-Stabilizing Systems (SSS),
2011.

[183] Alex Siegel, Kenneth Birman, and Keith Marzullo. Deceit: A �exible distributed �le system.
In Proceedings of the Workshop on the Management of Replicated Data, 1990.

[184] Simplenote. webpage, 2017. https:/,/simplenote.com/.

[185] Snapchat. Wikipedia, 2017. https://en.wikipedia.org/wiki/Snapchat.

[186] Simple object access protocol. http://www.w3.org/TR/soap/.

[187] socketcluster.io. socketcluster.io: a scalable framework for realtime apps and microservices.
http://socketcluster.io/#!/.

[188] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage for
geo-replicated systems. In Proceedings of the ACM Symposium on Operating System Principles
(SOSP), 2011.

[189] Spotify: Music for everyone. webpage, 2017. https://www.spotify.com/.

[190] Sqlite home page, 2015. https://www.sqlite.org/.

[191] Square cash. https://cash.me/.

[192] Twitter’s ’starling’ released as open source, Jan 2008. https://blog.twitter.com/o�cial/en_us/a/
2008/twitters-starling-released-as-open-source.html.

http://antirez.com/news/66
https:/,/simplenote.com/
https://en.wikipedia.org/wiki/Snapchat
http://www.w3.org/TR/soap/
http://socketcluster.io/#!/
https://www.spotify.com/
https://www.sqlite.org/
https://cash.me/
https://blog.twitter.com/official/en_us/a/2008/twitters-starling-released-as-open-source.html
https://blog.twitter.com/official/en_us/a/2008/twitters-starling-released-as-open-source.html

166

[193] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Proceedings of the ACM
SIGCOMM Conference, 2001.

[194] Michael Stonebraker and Joseph M Hellerstein. Readings in Database Systems. Morgan
Kaufmann San Francisco, 1998.

[195] Jacob Strauss, Justin Mazzola Paluska, Chris Lesniewski-Laas, Bryan Ford, Robert Morris,
and M Frans Kaashoek. Eyo: Device-transparent personal storage. In Proceedings of USENIX
Annual Technical Conference, 2011.

[196] Jeremy Stribling, Yair Sovran, Irene Zhang, Xavid Pretzer, Jinyang Li, M Frans Kaashoek, and
RobertMorris. Flexible,wide-area storage fordistributed systemswithWheelFS. InProceedings
of the USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2009.

[197] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and Sam Shah. Serving
large-scale batch computed data with Project Voldemort. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST), 2012.

[198] Andrew S Tanenbaum, Robbert Van Renesse, Hans Van Staveren, Gregory J Sharp, and Sape J
Mullender. Experiences with the Amoeba distributed operating system. Communications of
the ACM, 1990.

[199] Douglas B. Terry, Marvin M.¿eimer, Karin Petersen, Alan J. Demers, Mike J. Spreitzer, and
Carl H. Hauser. Managing update con�icts in bayou, a weakly connected replicated storage
system. In Proceedings of the ACM Symposium on Operating System Principles (SOSP), 1995.

[200] ¿ings. webpage, 2017. https://culturedcode.com/things/.

[201] Robert H. ¿omas. A majority consensus approach to concurrency control for multiple copy
databases. ACM Transactions on Database Systems, 4(2):180–209, June 1979.

[202] Global social gaming market to reach US$17.4 bn by 2019 propelled by rising popular-
ity of fun games. Transparency Market Research Press Release, Sept 2015. http://www.
transparencymarketresearch.com/pressrelease/social-gaming-market.htm.

[203] Trello. Wikipedia, 2017. https://en.wikipedia.org/wiki/Trello.

[204] JeanM. Twenge. Have smartphones destroyed a generation?¿eAtlantic, September 2017. https:
//www.theatlantic.com/magazine/archive/2017/09/has-the-smartphone-destroyed-a-generation/
534198/.

https://culturedcode.com/things/
http://www.transparencymarketresearch.com/pressrelease/social-gaming-market.htm
http://www.transparencymarketresearch.com/pressrelease/social-gaming-market.htm
https://en.wikipedia.org/wiki/Trello
https://www.theatlantic.com/magazine/archive/2017/09/has-the-smartphone-destroyed-a-generation/534198/
https://www.theatlantic.com/magazine/archive/2017/09/has-the-smartphone-destroyed-a-generation/534198/
https://www.theatlantic.com/magazine/archive/2017/09/has-the-smartphone-destroyed-a-generation/534198/

167

[205] Twimight open-source Twitter client for Android, 2013. http://code.google.com/p/twimight/.

[206] Twitter. Twitter developer API, 2014. https://dev.twitter.com/overview/api.

[207] Twitter. private communication, 9 2015.

[208] Twitter. Wikipedia, 2017. https://en.wikipedia.org/wiki/Twitter.

[209] Robbert van Renesse and Fred B Schneider. Chain replication for supporting high throughput
and availability. In Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

[210] Venmo. https://venmo.com/.

[211] Vine. Wikipedia, 2017. https://en.wikipedia.org/wiki/Vine_%28service%29.

[212] Voldemort: A distributed database, 2013. http://www.project-voldemort.com/voldemort/.

[213] Zhanyong Wan and Paul Hudak. Functional reactive programming from �rst principles.
In Proceedings of USENIX Conference on Programming Language Design and Implementation
(PLDI), 2000.

[214] Christopher Watkins and Peter Dayan. Q-learning. Machine Learning, 1992.

[215] William E. Weihl. Local atomicity properties: modular concurrency control for abstract data
types. ACM Transactions on Programming Languages and Systems, 1989.

[216] David A. Wheeler. SLOCCount, 2013. http://www.dwheeler.com/sloccount/.

[217] Words with friends. website, 2017. https://www.zynga.com/games/words-friends.

[218] Wunderlist. webpage, 2017. https://www.wunderlist.com/.

[219] Zen load balancer, 2013. http://www.zenloadbalancer.com/.

[220] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurhty, and Dan R. K.
Ports. Building consistent transactions with inconsistent replication. In Proceedings of the
ACM Symposium on Operating System Principles (SOSP), 2015.

[221] Irene Zhang, Adriana Szekeres, Dana Van Aken, Isaac Ackerman, Steven D. Gribble, Arvind
Krishnamurthy, andHenryM. Levy. Customizable and extensible deployment formobile/cloud
applications. In Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2014.

 http://code.google.com/p/twimight/
https://dev.twitter.com/overview/api
https://en.wikipedia.org/wiki/Twitter
https://venmo.com/
https://en.wikipedia.org/wiki/Vine_%28service%29
http://www.project-voldemort.com/voldemort/
http://www.dwheeler.com/sloccount/
https://www.zynga.com/games/words-friends
https://www.wunderlist.com/
http://www.zenloadbalancer.com/

168

[222] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K Aguilera, and Jinyang Li.
Transaction chains: achieving serializability with low latency in geo-distributed storage systems.
In Proceedings of the ACM Symposium on Operating System Principles (SOSP), 2013.

169

A | Open-source Code

All code for this thesis is open-source and can be found at github.

• Sapphire: https://github.com/UWSysLab/Sapphire

• Diamond: https://github.com/UWSysLab/diamond

• TAPIR: https://github.com/UWSysLab/tapir

https://github.com/UWSysLab/Sapphire
https://github.com/UWSysLab/diamond
https://github.com/UWSysLab/tapir

170

B | TLA+ Speci�cation

B.1 Inconsistent Replication Speci�cation

module IR consensus

¿is is a TLA+ speci�cation of the Inconsistent Replication algorithm. (And a mechanically-checked proof of its

correctness using TLAPS)

extends FiniteSets , Naturals , TLC , TLAPS

Constants

Constant parameters: Replicas: the set of all replicas (Replica IDs)

Clients: the set of all clients (Client IDs)

Quorums : the set of all quorums SuperQuorums : the set of all super quorums Results: the set of all possible result

typesOperationBody : the set of all possible operation bodies

(with arguments, etc. - can be in�nite)

S : shard id of the shard Replicas constitute

f : maximum number of failures allowed (half of n)

Constants used to bound variables, for model checking (Nat is bounded)max vc: maximum number of View-Changes

allowed for each replicasmax req : maximum number of op requests performed by clients

constants Replicas , Clients , Quorums , SuperQuorums , Results , OpBody ,

AppClientFail , AppReplicaFail ,

SuccessfulInconsistentOp(), SuccessfulConsensusOp(,),

171

Merge(,),
Sync(),
ExecInconsistent(),
ExecConsensus(),
Decide(),
f ,

S , Shards , S = shard id

max vc , max req

assume IsFiniteSet(Replicas)

assume QuorumAssumption
∆=

∧Quorums ⊆ subset Replicas

∧ SuperQuorums ⊆ subset Replicas

∧ ∀Q1, Q2 ∈ Quorums ∶ Q1 ∩Q2 ≠ {}
∧ ∀Q ∈ Quorums , R1, R2 ∈ SuperQuorums ∶

Q ∩R1 ∩R2 ≠ {}

assume FailuresAssumption
∆=

∀Q ∈ Quorums ∶ Cardinality(Q) > f

¿e possible states of a replica and the two types of operations currently de�ned by IR.

ReplicaState
∆= {“NORMAL” , “FAILED” , “RECOVERING” , “VIEW-CHANGING”}

ClientState
∆= {“NORMAL” , “FAILED”}

OpType
∆= {“Inconsistent” , “Consensus”}

OpStatus
∆= {“TENTATIVE” , “FINALIZED”}

De�nition of operation space

MessageId
∆= [cid ∶ Clients , msgid ∶ Nat]

Operations
∆= [type ∶ OpType , body ∶ OpBody]

172

Message is de�ned to be the set of all possible messages

TODO : Assumptions

Assume unique message ids

Assume no more than f replica failures

We use shart to specify for what shard this message was

(we share the variables)

Message
∆=

[type ∶ {“REQUEST”},
id ∶ MessageId ,

op ∶ Operations]
∪ [type ∶ {“REPLY”}, reply no result

id ∶ MessageId ,

v ∶ Nat ,

src ∶ Replicas]
∪

[type ∶ {“REPLY”}, reply with result

id ∶ MessageId ,

v ∶ Nat ,

res ∶ Results ,

src ∶ Replicas]
v = view num.

∪
[type ∶ {“START-VIEW-CHANGE”},
v ∶ Nat ,

src ∶ Replicas]
∪

[type ∶ {“DO-VIEW-CHANGE”},

173

r ∶ subset ([msgid ∶ MessageId ,

op ∶ Operations ,

res ∶ Results]
∪ [msgid ∶ MessageId ,

op ∶ Operations]),
v ∶ Nat ,

src ∶ Replicas ,

dst ∶ Replicas]
∪

[type ∶ {“START-VIEW”},
v ∶ Nat ,

src ∶ Replicas]
∪

[type ∶ {“START-VIEW-REPLY”},
v ∶ Nat ,

src ∶ Replicas ,

dst ∶ Replicas]
∪

[type ∶ {“FINALIZE”}, �nalize with no result

id ∶ MessageId ,

op ∶ Operations ,

res ∶ Results]
∪

[type ∶ {“FINALIZE”}, �nalize with result

id ∶ MessageId ,

op ∶ Operations ,

res ∶ Results]
∪ [type ∶ {“CONFIRM”},

174

v ∶ Nat ,

id ∶ MessageId ,

op ∶ Operations ,

res ∶ Results ,

src ∶ Replicas]

Variables and State Predicates

Variables:

1. State at each replica:

rState = Denotes current replica state. Either:

- NORMAL (processing operations)

- VIEW-CHANGING (participating in recovery)

rRecord = Unordered set of operations and their results

rViewNumber = current view number

2. State of communication medium: sentMsg = sent (but not yet received) messages

3. State at client:

cCurrentOperation = crt operation requested by the client

cMmessageCounter = the message I must use for the next operation

variables rState , rRecord , rViewNumber , rViewReplies , sentMsg , cCrtOp ,

cCrtOpToFinalize , cMsgCounter , cCrtOpReplies , cCrtOpConfirms ,

cState , aSuccessful , gViewChangesNo

De�ning these tuples makes it easier to express which varibles remain unchanged

rVars
∆= ⟨rState , rRecord , rViewNumber , rViewReplies⟩ Replica variables.

cVars
∆= ⟨cCrtOp , current operation at a client

cCrtOpToFinalize ,

cCrtOpReplies , current operation replies

cCrtOpConfirms ,

175

cMsgCounter ,

cState⟩ Client variables.

aVars
∆= ⟨aSuccessful⟩ Application variables

oVars
∆= ⟨sentMsg , gViewChangesNo⟩ Other variables.

vars
∆= ⟨rVars , cVars , oVars⟩ All variables.

TypeOK
∆=

∧ rState[S] ∈ [Replicas → ReplicaState]
∧ rRecord[S] ∈ [Replicas → subset ([msgid ∶ MessageId ,

op ∶ Operations ,

res ∶ Results ,

status ∶ OpStatus]
∪ [msgid ∶ MessageId ,

op ∶ Operations ,

status ∶ OpStatus])]
∧ rViewNumber[S] ∈ [Replicas → Nat]
∧ rViewReplies[S] ∈ [Replicas → subset [type ∶ {“do-view-change” ,

“start-view-reply”},
viewNumber ∶ Nat ,

r ∶ subset ([msgid ∶ MessageId ,

op ∶ Operations ,

res ∶ Results ,

status ∶ OpStatus]
∪ [msgid ∶ MessageId ,

op ∶ Operations ,

status ∶ OpStatus]),
src ∶ Replicas]]

∧ sentMsg[S] ∈ subset Message

176

∧ cCrtOp[S] ∈ [Clients → Operations ∪ {⟨⟩}]
∧ cCrtOpToFinalize ∈ [Clients → Operations ∪ {⟨⟩}]
∧ cCrtOpReplies[S] ∈ [Clients → subset ([viewNumber ∶ Nat ,

res ∶ Results ,

src ∶ Replicas]
∪ [viewNumber ∶ Nat ,

src ∶ Replicas])]
∧ cCrtOpConfirms[S] ∈ [Clients → subset [viewNumber ∶ Nat ,

res ∶ Results ,

src ∶ Replicas]]
∧ cMsgCounter[S] ∈ [Clients → Nat]
∧ cState ∈ [Clients → ClientState]
∧ aSuccessful ∈ subset ([mid ∶ MessageId ,

op ∶ Operations ,

res ∶ Results]
∪ [mid ∶ MessageId ,

op ∶ Operations])
∧ gViewChangesNo[S] ∈ Nat

Init
∆=

∧ rState = [r ∈ Replicas ↦ “NORMAL”]
∧ rRecord = [r ∈ Replicas ↦ {}]
∧ rViewNumber = [r ∈ Replicas ↦ 0]
∧ rViewReplies = [r ∈ Replicas ↦ {}]
∧ sentMsg = {}
∧ cCrtOp = [c ∈ Clients ↦ ⟨⟩]
∧ cCrtOpToFinalize = [c ∈ Clients ↦ ⟨⟩]
∧ cCrtOpReplies = [c ∈ Clients ↦ {}]

177

∧ cCrtOpConfirms = [c ∈ Clients ↦ {}]
∧ cMsgCounter = [c ∈ Clients ↦ 0]
∧ cState = [c ∈ Clients ↦ “NORMAL”]
∧ aSuccessful = {}
∧ gViewChangesNo = 0

Actions

Send(m) ∆= sentMsg ′ = [sentMsg except ![S] = @ ∪ {m}]

Client Actions

Note: choose does not introduce nondeterminism (the same value is chosen each time)

Client sends a request

ClientRequest(c , op) ∆=
∧ cCrtOp[S][c] = ⟨⟩ the client is not waiting for a result

of another operation

∧ cCrtOpToFinalize[S][c] = ⟨⟩
∧ cMsgCounter ′ = [cMsgCounter except ![S][c] = @ + 1]
∧ cCrtOp′ = [cCrtOp except ![S][c] = op]
∧ Send([type ↦ “REQUEST” ,

id ↦ [cid ↦ c , msgid ↦ cMsgCounter[S][c] + 1],
op ↦ op])

∧ unchanged ⟨rVars , aVars , cCrtOpReplies , cCrtOpToFinalize ,

cCrtOpConfirms , cState , gViewChangesNo⟩
∧ cMsgCounter[S][c] < max req BOUND the number of requests a client can make

178

Client received a reply

ClientReceiveReply(c) ∆=
∃msg ∈ sentMsg[S] ∶
∧msg .type = “REPLY”

∧ cCrtOp[S][c] ≠ ⟨⟩
∧msg .id = [cid ↦ c , msgid ↦ cMsgCounter[S][c]] reply to c’s request for crt op

TODO : if already reply from src, keep the most recent one (biggest view Number)

∧Assert(Cardinality(cCrtOpReplies[c]) < 10, “cCrtOpReplies cardinality bound”)
∧ ∨ ∧ cCrtOp[S][c].type = “Inconsistent”

∧ cCrtOpReplies ′ = [cCrtOpReplies except ![S][c] = @ ∪
{[viewNumber ↦ msg .v ,

src ↦ msg .src]}]
∨ ∧ cCrtOp[S][c].type = “Consensus”

∧ cCrtOpReplies ′ = [cCrtOpReplies except ![S][c] = @ ∪
{[viewNumber ↦ msg .v ,

res ↦ msg .res ,

src ↦ msg .src]}]
∧ unchanged ⟨cCrtOp , cCrtOpToFinalize , cCrtOpConfirms ,

cMsgCounter , cState , rVars , aVars , oVars⟩

“Helper” formulas

matchingViewNumbers(Q , c) ∆=
a (super)quorum of replies with matching view numbers

∧ ∀ r ∈ Q ∶
∧ ∃ reply ∈ cCrtOpReplies[S][c]: reply .src = r

∧ ∀p ∈ Q ∶ ∃ rr , pr ∈ cCrtOpReplies[S][c] ∶
∧ rr .src = r

∧ pr .src = p

179

∧ rr .viewNumber = pr .viewNumber

matchingViewNumbersAndResults(Q , c) ∆=
a (super)quorum of replies with matching view numbers

and results

∧ ∀ r ∈ Q ∶
∧ ∃ reply ∈ cCrtOpReplies[S][c]: reply .src = r

∧ ∀p ∈ Q ∶ ∃ rr , pr ∈ cCrtOpReplies[S][c] ∶
∧ rr .src = r

∧ pr .src = p

∧ rr .viewNumber = pr .viewNumber

∧ rr .res = pr .res

IR Client received enough responses to decide

what to do with the operation

ClientDecideOp(c) ∆=
∧ cCrtOp[S][c] ≠ ⟨⟩

I. ¿e IR Client got a simple quorum of replies

∧ ∨ ∃Q ∈ Quorums ∶
∧ ∀ r ∈ Q ∶

∃ reply ∈ cCrtOpReplies[S][c] ∶ reply .src = r

∧ ∨ ∧ cCrtOp[S][c].type = “Inconsistent”

∧ matchingViewNumbers(Q , c)
∧ aSuccessful ′ = aSuccessful ∪

{[mid ↦ [cid ↦ c ,

msgid ↦ cMsgCounter[S][c]],
op ↦ cCrtOp[S][c]]}

∧ SuccessfulInconsistentOp(cCrtOp[S][c])

180

∧ Send([type ↦ “FINALIZE” ,

id ↦ [cid ↦ c , msgid ↦ cMsgCounter[S][c]],
op ↦ cCrtOp[S][c]])

∧ unchanged ⟨cCrtOpToFinalize⟩

∨ ∧ cCrtOp[S][c].type = “Consensus”

∧ let res
∆= if matchingViewNumbersAndResults(Q , c)
then

choose result ∈
{res ∈ Results ∶

∃ reply ∈ cCrtOpReplies[S][c] ∶
∧ reply .src ∈ Q

∧ reply .res = res} ∶ true
else

Decide(cCrtOpReplies[S][c])
in

∧ Send([type ↦ “FINALIZE” ,

id ↦ [cid ↦ c , msgid ↦ cMsgCounter[S][c]],
op ↦ cCrtOp[S][c],
res ↦ res])

∧ cCrtOpToFinalize ′ = [cCrtOp except ![S][c] = cCrtOp[S][c]]
∧ unchanged ⟨aSuccessful⟩

II . ¿e IR Client got super quorum of responses

∨ ∃SQ ∈ SuperQuorums ∶
∧ ∀ r ∈ SQ ∶

∃ reply ∈ cCrtOpReplies[S][c] ∶ reply .src = r

∧ cCrtOp[S][c].type = “Consensus” only care if consensus op

∧ matchingViewNumbersAndResults(SQ , c)

181

∧ let res
∆= choose result ∈

{res ∈ Results ∶
∃ reply ∈ cCrtOpReplies[S][c] ∶
∧ reply .src ∈ SQ

∧ reply .res = res} ∶ true
in

∧ Send([type ↦ “FINALIZE” ,

id ↦ [cid ↦ c , msgid ↦ cMsgCounter[S][c]],
op ↦ cCrtOp[S][c],
res ↦ res])

∧ aSuccessful ′ = aSuccessful ∪
{[mid ↦ [cid ↦ c ,

msgid ↦ cMsgCounter[S][c]],
op ↦ cCrtOp[S][c],
res ↦ res]}

∧ SuccessfulConsensusOp(cCrtOp[S][c], res)
∧ unchanged ⟨cCrtOpToFinalize⟩

∧ cCrtOp′ = [cCrtOp except ![S][c] = ⟨⟩]
∧ cCrtOpReplies ′ = [cCrtOpReplies except ![S][c] = {}]
∧ unchanged ⟨cMsgCounter , cState , cCrtOpConfirms , rVars , gViewChangesNo⟩

Client received a con�rm

ClientReceiveConfirm(c) ∆=
∃msg ∈ sentMsg[S] ∶
∧msg .type = “CONFIRM”

∧ cCrtOpToFinalize[S][c] ≠ ⟨⟩
∧msg .id = [cid ↦ c , msgid ↦ cMsgCounter[S][c]] reply to c’s request for crt op

∧ cCrtOpConfirms ′ = [cCrtOpConfirms except ![S][c] = @ ∪

182

{[viewNumber ↦ msg .v ,

res ↦ msg .res ,

src ↦ msg .src]}]
∧ unchanged ⟨cCrtOp , cCrtOpReplies , cCrtOpToFinalize , cMsgCounter ,

cState , rVars , aVars , oVars⟩

An operation is �nalized by a client and result returned to the application

ClientFinalizedOp(c) ∆=
∧ cCrtOpToFinalize[S][c] ≠ ⟨⟩
∧ ∃Q ∈ Quorums ∶

IR client received a quorum of responses

∧ ∀ r ∈ Q ∶
∃ reply ∈ cCrtOpConfirms[S][c] ∶ reply .src = r

∧ let

take the result in the biggest view number

reply
∆= choose reply ∈ cCrtOpConfirms[S][c] ∶

¬∃ rep ∈ cCrtOpConfirms[S][c] ∶
rep .viewNumber > reply .viewNumber

in

∧ aSuccessful ′ = aSuccessful ∪
{[mid ↦ [cid ↦ c ,

msgid ↦ cMsgCounter[S][c]],
op ↦ cCrtOpToFinalize[S][c],
res ↦ reply .res]}

∧ SuccessfulConsensusOp(cCrtOp[S][c], reply .res) respond to app

∧ cCrtOpToFinalize ′ = [cCrtOpToFinalize except ![S][c] = ⟨⟩]
∧ cCrtOpConfirms ′ = [cCrtOpConfirms except ![S][c] = {}]
∧ unchanged ⟨rVars , cCrtOp , cCrtOpReplies , cMsgCounter , cState , oVars⟩

183

Client fails and looses all data

ClientFail(c) ∆=
∧ cState ′ = [cState except ![S][c] = “FAILED”]
∧ cMsgCounter ′ = [cMsgCounter except ![S][c] = 0]
∧ cCrtOp′ = [cCrtOp except ![S][c] = ⟨⟩]
∧ cCrtOpReplies ′ = [cCrtOpReplies except ![S][c] = {}]
∧AppClientFail

∧ unchanged ⟨rVars , aVars , oVars⟩

Client recovers

ClientRecover(c) ∆= false

Replica Actions

Replica sends a reply

ReplicaReceiveRequest(r) ∆=
∃msg ∈ sentMsg[S] ∶
∧msg .type = “REQUEST”

∧ ¬∃ rec ∈ rRecord[S][r] ∶ rec .msgid = msg .id

not alredy replied for this op

∧ ∨ ∧msg .op .type = “Inconsistent”

∧ Send([type ↦ “REPLY” ,

id ↦ msg .id ,

v ↦ rViewNumber[S][r],
src ↦ r])

∧ rRecord ′ = [rRecord except ![S][r] = @ ∪ {[msgid ↦ msg .id ,

op ↦ msg .op ,

status ↦ “TENTATIVE”]}]

184

∨ ∧msg .op .type = “Consensus”

∧ let res
∆= ExecConsensus(msg .op)

in

∧ Send([type ↦ “REPLY” ,

id ↦ msg .id ,

v ↦ rViewNumber[S][r],
res ↦ res ,

src ↦ r])
∧ rRecord ′ = [rRecord except ![S][r] = @ ∪ {[msgid ↦ msg .id ,

op ↦ msg .op ,

res ↦ res ,

status ↦ “TENTATIVE”]}]
∧ unchanged ⟨rState , rViewNumber , rViewReplies , cVars , aVars , gViewChangesNo⟩

Replica receive a message from an IR Client to �nalize an op

For inconsistent oprations the replica sends < CONFIRM > and

executes the operation.

TODO : Write this more compact

ReplicaReceiveFinalize(r) ∆=
∃msg ∈ sentMsg[S] ∶
∧msg .type = “FINALIZE”

∧ ∨ ∧msg .op .type = “Inconsistent”

∧ Send([type ↦ “CONFIRM” ,

v ↦ rViewNumber[S][r],
id ↦ msg .id ,

op ↦ msg .op ,

src ↦ r])
∧ ∨ ∃ rec ∈ rRecord[S][r] ∶

185

∧ rec .msgid = msg .id

∧ rec .op = msg .op Replica knows of this op

∧ if rec .status ≠ “FINALIZED”

then ExecInconsistent(msg .op)
else true

∧ rRecord ′ = [rRecord except ![S][r] = (@ / {rec}) ∪
{[msgid ↦ msg .id ,

op ↦ msg .op ,

status ↦ “FINALIZED”]}]
∨ ∧ ¬∃ rec ∈ rRecord[S][r] ∶ Replica didn’t hear of this op

∧ rec .msgid = msg .id

∧ rec .op = msg .op

∧ rRecord ′ = [rRecord except ![S][r] = @ ∪
{[msgid ↦ msg .id ,

op ↦ msg .op ,

status ↦ “FINALIZED”]}]
∧ExecInconsistent(msg .op)

∨ ∧msg .op .type = “Consensus”

∧ ∨ ∧ ∃ rec ∈ rRecord[S][r] ∶
∧ rec .msgid = msg .id

∧ rec .op = msg .op Replica knows of this op

∧ ∨ ∧ rec .status = “TENTATIVE” Operation tentative

∧ rRecord ′ = [rRecord except ![S][r] = (@ / {rec}) ∪
{[msgid ↦ msg .id ,

op ↦ msg .op ,

res ↦ msg .res ,

status ↦ “FINALIZED”]}]
∧ Send([type ↦ “CONFIRM” ,

186

v ↦ rViewNumber[S][r],
id ↦ msg .id ,

op ↦ msg .op ,

res ↦ msg .res ,

src ↦ r])
∧ if rec .res ≠ msg .res

then UpdateConsensus(msg .op , msg .res)
else true

∨ ∧ rec .status = “FINALIZED” Operation already �nalized (view change happened in the meantime)

∧ Send([type ↦ “CONFIRM” ,

v ↦ rViewNumber[S][r],
id ↦ msg .id ,

op ↦ msg .op ,

res ↦ rec .res ,

src ↦ r])
∧ unchanged ⟨rRecord⟩

∨ ∧ ¬∃ rec ∈ rRecord[S][r] ∶ Replica didn’t hear of this op

∧ rec .msgid = msg .id

∧ rec .op = msg .op

∧ rRecord ′ = [rRecord except ![S][r] = @ ∪
{[msgid ↦ msg .id ,

op ↦ msg .op ,

res ↦ msg .res ,

status ↦ “FINALIZED”]}]
∧ Send([type ↦ “CONFIRM” ,

v ↦ rViewNumber[S][r],
id ↦ msg .id ,

op ↦ msg .op ,

187

res ↦ msg .res ,

src ↦ r])
∧ExecuteAndUpdateConsensus(msg .op , msg .res)

∧ unchanged ⟨rState , rViewNumber , rViewReplies , cVars , aVars , gViewChangesNo⟩

A replica starts the view change procedure

supports concurrent view changes (id by src)

ReplicaStartViewChange(r) ∆=
∧ Send([type ↦ “START-VIEW-CHANGE” ,

v ↦ rViewNumber[r],
src ↦ r])

∧ rState ′ = [rState except ![r] = “RECOVERING”]
∧ unchanged ⟨rViewNumber , rViewReplies , rRecord , cVars , aVars⟩
∧ gViewChangesNo < max vc BOUND on number of view changes

∧ gViewChangesNo′ = gViewChangesNo + 1

A replica received a message to start view change

ReplicaReceiveStartViewChange(r) ∆=
∧ ∃msg ∈ sentMsg[S] ∶

∧msg .type = “START-VIEW-CHANGE”

∧ let v new
∆=

if msg .v > rViewNumber[r] then msg .v

else rViewNumber[S][r]
in

∧ ¬∃m ∈ sentMsg[S] ∶ not already sent (just to bound the model checker)

∧m .type = “DO-VIEW-CHANGE”

∧m .v ≥ msg .v

∧m .dst = msg .src

∧m .src = r

188

∧ Send([type ↦ “DO-VIEW-CHANGE” ,

v ↦ v new + 1,
r ↦ rRecord[r],
src ↦ r ,

dst ↦ msg .src])
∧ rViewNumber ′ = [rViewNumber except ![S][r] = v new + 1]

∧ rState ′ = [rState except ![S][r] = “VIEW-CHANGING”]
∧ unchanged ⟨cVars , rRecord , rViewReplies , aVars , gViewChangesNo⟩

Replica received DO-VIEW-CHANGE message

ReplicaReceiveDoViewChange(r) ∆=
∧ ∃msg ∈ sentMsg[S] ∶

∧msg .type = “DO-VIEW-CHANGE”

∧msg .dst = r

∧msg .v > rViewNumber[r]
∧ rViewReplies ′ = [rViewReplies except ![r] = @ ∪

{[type ↦ “do-view-change” ,

viewNumber ↦ msg .v ,

r ↦ msg .r ,

src ↦ msg .src]}]
∧ unchanged ⟨cVars , rViewNumber , rRecord , rState , aVars , oVars⟩

A replica received enough view change replies to start processing in the new view

ReplicaDecideNewView(r) ∆=
∧ ∃Q ∈ Quorums ∶

∧ ∀ rep ∈ Q ∶ ∃ reply ∈ rViewReplies[r] ∶ ∧ reply .src = rep

∧ reply .type = “do-view-change”

received at least a quorum of replies

∧ let recoveredConensusOps a
∆=

189

any consensus operation found in at least a majority of a Quorum

{x ∈ union {y .r ∶ y ∈ {z ∈ rViewReplies[S][r] ∶ z .src ∈ Q}} ∶
∧ x [2].type = “Consensus”

∧ ∃P ∈ SuperQuorums ∶
∀ rep ∈ Q ∩P ∶
∃ reply ∈ rViewReplies[r] ∶
∧ reply .src = rep

∧ x ∈ reply .r} same op, same result

recoveredConensusOps b
∆= TODO : what result? from the app?

the rest of consensus ops found in at least one record (discard the result)

{⟨z [1], z [2]⟩ ∶
z ∈ {x ∈ union {y .r ∶ y ∈ {z ∈ rViewReplies[S][r] ∶ z .src ∈ Q}} ∶
∧ x [2].type = “Consensus”

∧ ¬x ∈ recoveredConensusOps a}}

recoveredInconsistentOps c
∆=

any inconsistent operation found in any received record (discard the result)

{⟨z [1], z [2]⟩ ∶
z ∈ {x ∈ union {y .r ∶ y ∈ {z ∈ rViewReplies[S][r] ∶ z .src ∈ Q}} ∶

x [2].type = “Inconsistent”}}
in

∧AppRecoverOpsResults(recoveredConensusOps a)
∧AppRecoverOps(recoveredConensusOps b)
∧AppRecoverOps(recoveredInconsistentOps c)
∧ rRecord ′ = [rRecord except ![S][r] = @ ∪ recoveredConensusOps a

∪ recoveredConensusOps b

∪ recoveredInconsistentOps c]
∧ let v new

∆=

190

max view number received

choose v ∈ {x .viewNumber ∶ x ∈ rViewReplies[r]} ∶
∀ y ∈ rViewReplies[r] ∶

y .viewNumber ≤ v

in

∧ Send([type ↦ “START-VIEW” ,

v ↦ v new ,

src ↦ r])
∧ rViewNumber ′ = [rViewNumber except ![r] = v new]

∧ rViewReplies ′ = [rViewReplies except ![r] = {}]
∧ unchanged ⟨rState , cVars , aVars , gViewChangesNo⟩

A replica receives a start view message

ReplicaReceiveStartView(r) ∆=
∧ ∃msg ∈ sentMsg ∶
∧msg .type = “START-VIEW”

∧msg .v ≥ rViewNumber[r]
∧msg .src ≠ r don’t reply to myself

∧ Send([type ↦ “START-VIEW-REPLY” ,

v ↦ msg .v ,

src ↦ r ,

dst ↦ msg .src])
∧ rViewNumber ′ = [rViewNumber except ![r] = msg .v]

∧ rState ′ = [rState except ![r] = “NORMAL”]
∧ unchanged ⟨rRecord , rViewReplies , cVars , aVars , gViewChangesNo⟩

ReplicaReceiveStartViewReply(r) ∆=
∧ ∃msg ∈ sentMsg ∶
∧msg .type = “START-VIEW-REPLY”

191

∧msg .dst = r

∧msg .v > rViewNumber[r] receive only if bigger than the last view I was in

∧ rViewReplies ′ = [rViewReplies except ![S][r] = @ ∪
{[type ↦ “start-view-reply” ,

viewNumber ↦ msg .v ,

r ↦ {},
src ↦ msg .src]}]

∧ unchanged ⟨rRecord , rState , rViewNumber , cVars , aVars , oVars⟩

ReplicaRecover(r) ∆= we received enough START-VIEW-REPLY messages

∃Q ∈ Quorums ∶
∧ r ∈ Q

∧ ∀p ∈ Q ∶ ∨ p = r

∨ ∧ p ≠ r

∧ ∃ reply ∈ rViewReplies[S][r] ∶ ∧ reply .src = p

∧ reply .type = “start-view-reply”

∧ rViewReplies ′ = [rViewReplies except ![S][r] = {}]
∧ rState ′ = [rState except ![r] = “NORMAL”]
∧ unchanged ⟨rRecord , rViewNumber , cVars , aVars , oVars⟩

ReplicaResumeViewChange(r) ∆= TODO : On timeout

false

A replica fails and looses everything

ReplicaFail(r) ∆= TODO : check cardinality

∧ rState ′ = [rState except ![S][r] = “FAILED”]
∧ rRecord ′ = [rRecord except ![S][r] = {}]
∧ rViewNumber ′ = [rViewNumber except ![r] = 0] / * TODO : check what happens if we loose the view number

∧ rViewReplies ′ = [rViewReplies except ![S][r] = {}]
∧ unchanged ⟨rViewNumber , cVars , aVars , oVars⟩

192

∧Cardinality({re ∈ Replicas ∶
We assume less than f replicas are allowed to fail

∨ rState[S][re] = “FAILED”

∨ rState[S][re] = “RECOVERING”}) < f

High-Level Actions

ClientAction(c) ∆=
∨ ∧ cState[c] = “NORMAL”

∧ ∨ClientRequest(c) / * some client tries to replicate commit an operation
∨ClientReceiveReply(c) some client receives a reply from a replica

∨ClientReceiveConfirm(c) some client receives a con�rm from a replica

∨ClientFail(c) / * some client fails
∨ClientDecideOp(c) an operation is successful at some client

∨ClientFinalizedOp(c) / * an operation was �nalized at some client
∨ ∧ cState[c] = “FAILED”

∧ ∨ClientRecover(c)

ReplicaAction(r) ∆=
∨ ∧ rState[S][r] = “NORMAL”

∧ ∨ReplicaReceiveRequest(r) some replica sends a reply to a REQUEST msg

∨ReplicaReceiveFinalize(r)
∨ReplicaReceiveStartViewChange(r)
∨ReplicaReceiveStartView(r)
∨ReplicaFail(r) / * some replica fails

∨ ∧ rState[S][r] = “FAILED”

∧ ∨ReplicaStartViewChange(r) / * some replica starts to recover
∨ ∧ rState[r] = “RECOVERING” / * just to make it clear

193

∧ ∨ReplicaReceiveDoViewChange(r)
∨ReplicaDecideNewView(r)
∨ReplicaReceiveStartViewReply(r)
∨ReplicaRecover(r)

∨ ∧ rState[S][r] = “VIEW-CHANGING”

∧ ∨ReplicaReceiveStartViewChange(r)
∨ReplicaReceiveStartView(r)
∨ReplicaResumeViewChange(r) / * some timeout expired and view change not �nished

∨ReplicaFail(r)

Next
∆=

∨ ∃ c ∈ Clients ∶ ClientAction(c)
∨ ∃ r ∈ Replicas ∶ ReplicaAction(r)

Spec
∆= Init ∧ ◻[Next]vars

FaultTolerance
∆=

∧ ∀ successfulOp ∈ aSuccessful , Q ∈ Quorums ∶
(∀ r ∈ Q ∶ rState[S][r] = “NORMAL” ∨ rState[S][r] = “VIEW-CHANGING”)
Ô⇒ (∃p ∈ Q ∶ ∃ rec ∈ rRecord[S][p] ∶

∧ successfulOp .msgid = rec .msgid

∧ successfulOp .op = rec .op) Not necessarily same result

∧ ∀finalizedOp ∈ aSuccessful , Q ∈ Quorums ∶
(∀ r ∈ Q ∶ rState[r] = “NORMAL” ∨ rState[r] = “VIEW-CHANGING”)
Ô⇒ (∃P ∈ SuperQuorums ∶

∀p ∈ Q ∩P ∶
∃ rec ∈ rRecord[p] ∶

finalizedOp = rec)

Inv
∆= TypeOK ∧ FaultTolerance

194

B.2 TAPIR Speci�cation

module TAPIR

¿is is a TLA+ speci�cation of the TAPIR algorithm.

extends FiniteSets , Naturals , TLC , TLAPS

Max(S) ∆= if S = {} then 0 else choose i ∈ S ∶ ∀ j ∈ S ∶ j ≤ i

TAPIR constants:

1. Shards : function from shard id to set of replica ids in the shard

2. Transactions: set of all possible transactions

3. nr shards : number of shards

constants Shards , Transactions , NrShards

Note: assume unique number ids for replicas

IR constants & variables (description in the IR module)

constants Clients , Quorums , SuperQuorums ,

max vc , max req , f

variables rState , rRecord , rViewNumber , rViewReplies , sentMsg , cCrtOp ,

cCrtOpToFinalize , cMsgCounter , cCrtOpReplies , cCrtOpConfirms ,

cState , aSuccessful , gViewChangesNo

irReplicaVars
∆= ⟨rState , rRecord , rViewNumber , rViewReplies⟩

irClientVars
∆= ⟨cCrtOp , current operation at a client

cCrtOpReplies , current operation replies

cMsgCounter ,

cState ,

cCrtOpToFinalize ,

195

cCrtOpConfirms⟩ Client variables.

irAppVars
∆= ⟨aSuccessful⟩ Application variables

irOtherVars
∆= ⟨sentMsg , gViewChangesNo⟩ Other variables.

TAPIR Variables/State: 1. State at each replica:

rPrepareTxns = List of txns this replica is prepared to commit

rTxnsLog = Log of committed and aborted txns in ts order rStore = Versioned store rBkpTable = Table of

txns for which this replica

is the bkp coordinator

2. State of communication medium: sentMsg = sent (and duplicate) messages

3. State at client: cCrtTxn = crt txn requested by the client

TAPIR variables & data structures

variables rPreparedTxns , rStore , rTxnsLogAborted , rTxnsLogCommited ,

rClock , cCrtTxn , cClock

tapirReplicaVars
∆= ⟨rPreparedTxns , rStore , rTxnsLogAborted , rTxnsLogCommited ,

rClock⟩
tapirClientVars

∆= ⟨cCrtTxn , cClock⟩

StoreEntry
∆= [vs ∶ Nat , val ∶ Nat] vs = version

Store
∆= [key ∶ Nat ,

entries ∶ subset StoreEntry ,

latestVs ∶ Nat ,

latestVal ∶ Nat]

TransactionTs
∆= [cid ∶ Clients , clock ∶ Nat] Timestamp

ReadSet
∆= [key ∶ Nat , val ∶ Nat , vs ∶ Nat]

WriteSet
∆= [key ∶ Nat , val ∶ Nat]

Transaction
∆= [rSet ∶ subset ReadSet ,

wSet ∶ subset WriteSet ,

shards ∶ subset Nat]

196

TypeOK
∆=

∧ rStore ∈ [union {Shards[i] ∶ i ∈ 1 . . NrShards} → subset Store]
∧ rPreparedTxns ∈ [union {Shards[i] ∶ i ∈ 1 . . NrShards} → subset Transaction]
∧ rTxnsLogAborted ∈ [union {Shards[i] ∶ i ∈ 1 . . NrShards} → subset Transaction]
∧ rTxnsLogCommited ∈ [union {Shards[i] ∶ i ∈ 1 . . NrShards} → subset Transaction]

TAPIRResults
∆= {“Prepare-OK” , “Retry” , “Prepare-Abstain” , “Abort”}

TAPIROpType
∆= {“Prepare” , “ABORT” , “COMMIT”}

TAPIROpBody
∆= [opType ∶ TAPIROpType , txn ∶ Transaction]

TAPIRClientFail
∆= true state we lose at the app level

TAPIRReplicaFail
∆= true state we lose at the app level

TAPIR implementation of IR interface

TAPIRExecInconsistent(op) ∆= true

TAPIRExecConsensus(op) ∆= if op .type = “Consensus” then “Prepare-OK” else “Abort”

TAPIRDecide(results) ∆= true

TAPIRMerge(d , u) ∆= true

TAPIRSync(records) ∆= true

TAPIRSuccessfulInconsistentOp(op) ∆= true

TAPIRSuccessfulConsensusOp(op , res) ∆= true

Initialize for all shards

InitIR
∆=

∧ rState = [s ∈ 1 . . NrShards ↦ [r ∈ Shards[s] ↦ “NORMAL”]]
∧ rRecord = [s ∈ 1 . . NrShards ↦ [r ∈ Shards[s] ↦ {}]]
∧ rViewNumber = [s ∈ 1 . . NrShards ↦ [r ∈ Shards[s] ↦ 0]]
∧ rViewReplies = [s ∈ 1 . . NrShards ↦ [r ∈ Shards[s] ↦ {}]]

197

∧ sentMsg = [s ∈ 1 . . NrShards ↦ {}]
∧ cCrtOp = [s ∈ 1 . . NrShards ↦ [c ∈ Clients ↦ ⟨⟩]]
∧ cCrtOpToFinalize = [s ∈ 1 . . NrShards ↦ [c ∈ Clients ↦ ⟨⟩]]
∧ cMsgCounter = [s ∈ 1 . . NrShards ↦ [c ∈ Clients ↦ 0]]
∧ cCrtOpReplies = [s ∈ 1 . . NrShards ↦ [c ∈ Clients ↦ {}]]
∧ cCrtOpConfirms = [s ∈ 1 . . NrShards ↦ [c ∈ Clients ↦ {}]]
∧ cState = [c ∈ Clients ↦ “NORMAL”]
∧ aSuccessful = {}
∧ gViewChangesNo = [s ∈ 1 . . NrShards ↦ 0]

IR instance per shard TODO : modify replica also

IR(s) ∆= instance IR consensus with AppClientFail ← TAPIRClientFail ,

AppReplicaFail ← TAPIRReplicaFail ,

OpBody ← TAPIROpBody ,

ExecInconsistent ← TAPIRExecInconsistent ,

ExecConsensus ← TAPIRExecConsensus ,

Merge ← TAPIRMerge ,

Sync ← TAPIRSync ,

SuccessfulInconsistentOp ← TAPIRSuccessfulInconsistentOp ,

SuccessfulConsensusOp ← TAPIRSuccessfulConsensusOp ,

Decide ← TAPIRDecide ,

Results ← TAPIRResults ,

Replicas ← Shards[s],
Quorums ← Quorums[s],
SuperQuorums ← SuperQuorums[s],
S ← s

TAPIR messages

Message
∆=

198

[type ∶ {“READ”},
key ∶ Nat ,

dst ∶ union Shards]
∪
[type ∶ {“READ-REPLY”},
key ∶ Nat ,

val ∶ Nat ,

vs ∶ Nat , version

dst ∶ Clients]
∪

[type ∶ {“READ-VERSION”},
key ∶ Nat ,

vs ∶ Nat ,

dst ∶ union Shards]
∪

[type ∶ {“READ-VERSION-REPLY”},
key ∶ Nat ,

vs ∶ Nat ,

dst ∶ Clients]

InitTAPIR
∆= ∧ cCrtTxn = [c ∈ Clients ↦ ⟨⟩]
∧ cClock = [c ∈ Clients ↦ 0]
∧ rPreparedTxns = [s ∈ 1 . . NrShards ↦ [r ∈ Shards[s] ↦ {}]]
∧ rStore = [r ∈ union {Shards[i] ∶ i ∈ 1 . . NrShards} ↦ {}]
∧ rTxnsLogAborted = [s ∈ 1 . . NrShards ↦ [r ∈ Shards[s] ↦ {}]]

∧ rClock = [s ∈ 1 . . NrShards ↦ [r ∈ Shards[s] ↦ 0]]

Init
∆= InitIR ∧ InitTAPIR

199

Tapir replica actions

TAPIRReplicaReceiveRead(r) ∆= true

TAPIRReplicaAction(r) ∆=
∨ ∧ rState[r] = “NORMAL”

∧ ∨TAPIRReplicaReceiveRead(r)

Tapir client actions

TAPIRClientExecuteTxn(c) ∆=
�rst, resolve all reads (read from any replica and get the vs)

then send prepares in all shard involved by seting the cCrtOp in the

respective IR shard instance

TODO : for now just simulate this, pick a transaction from

transaction pool, get some versions from the replica

stores

∧ cCrtTxn[c] = ⟨⟩
∧ ∃ t ∈ Transactions ∶
let rSet

∆= {rse ∈ ReadSet ∶
∧ ∃ trse ∈ t .rSet ∶ rse = trse

∧ let

r
∆= Max({r ∈ Shards[(rse .key%NrShards) + 1] ∶

∃ se ∈ rStore[r] ∶ rse .key = se .key})
in

∧ r ≠ 0
∧ ∃ se ∈ rStore[r] ∶

200

∧ rse .key = se .key

∧ rse .val = se .latestVal

∧ rse .vs = se .latestVs

}
shards

∆= {s ∈ 1 . . NrShards ∶
∨ ∃ trse ∈ t .rSet ∶ s = (trse .key%NrShards) + 1
∨ ∃ twse ∈ t .wSet ∶ s = (twse .key%NrShards) + 1}

in

∧Cardinality(rSet) = Cardinality(t .rSet) found all the reads

∧ cCrtTxn ′ = [cCrtTxn except ![c] = [rSet ↦ rSet ,

wSet ↦ t .wSet ,

shards ↦ shards]]
∧ unchanged ⟨irReplicaVars , irClientVars , irOtherVars , irAppVars ,

tapirReplicaVars , cClock⟩

TAPIRClientPrepareTxn(c) ∆=
∧ cCrtTxn[c] ≠ ⟨⟩
∧ ∃ s ∈ cCrtTxn[c].shards ∶ prepare in shard s

- ok if already prepared

∧ IR(s) !ClientRequest(c , [type ↦ “Consensus” ,

body ↦ ⟨“Prepare” , cCrtTxn⟩])
∧ unchanged ⟨irReplicaVars , irAppVars ,

cCrtOpReplies ,

cCrtOpConfirms ,

cCrtOpToFinalize ,

gViewChangesNo ,

cState , tapirClientVars , tapirReplicaVars⟩

TAPIRClientAction(c) ∆=

201

∨ ∧ cState[c] = “NORMAL”

∧ ∨TAPIRClientExecuteTxn(c) for now just simulate this

(don’t send explicit READ messages)

∨TAPIRClientPrepareTxn(c)
∨ 2PC (c)

High-Level Actions

Next
∆=

∧ ∨ ∃ c ∈ Clients ∶ TAPIRClientAction(c)
∨ ∧ ∃ s ∈ 1 . . NrShards ∶ IR(s) !Next

∧ unchanged ⟨tapirClientVars , tapirReplicaVars⟩

Inv
∆= Cardinality(aSuccessful) < 2

	List of Figures
	Glossary
	Overview
	The Mobile/Cloud Revolution
	The Case for a Mobile/Cloud Operating System
	Mobile/Cloud Challenges and Application Requirements
	Mobile/Cloud OS Requirements
	The Challenge of Designing a Mobile/Cloud OS

	Existing Mobile/Cloud Systems
	Distributed Storage Systems
	Service-Oriented Architectures
	Distributed Run-time Systems
	Backend-as-a-Service

	Contributions
	Run-time Management: Sapphire
	Memory Management: Diamond
	Storage Management: TAPIR
	Summary

	Sapphire
	Background
	Architecture
	Design Goals
	System Architecture

	Programming Model
	Deployment Kernel
	Deployment Managers
	DM Library
	DM Structure and API
	DM Code Example
	DM Design Examples

	Implementation
	Experience & Evaluation
	Applications
	Experimental Setup
	Microbenchmarks
	Deployment Manager Performance

	Related Work
	Summary

	Diamond
	Background
	Roll-your-own Data Management
	Wide-area Storage Systems
	Reactive Programming Frameworks

	Architecture & Programming Model
	System Model
	Data Model
	System Calls
	Reactive Data Management Guarantees
	A Simple Code Example
	Offline Support
	Security

	System Design
	Data Management Architecture
	rmap and Language Bindings
	Transaction Coordination Overview

	Wide-area Optimizations
	Data-type Optimistic Concurrency Control
	Client Caching with Bounded Validity Intervals
	Data Push Notifications

	Experience & Evaluation
	Prototype Implementation
	Programming Experience
	Performance Evaluation

	Related Work
	Summary

	TAPIR
	Background
	Inconsistent Replication
	IR Overview
	IR Protocol
	Correctness

	Building Atop IR
	IR Application Protocol Requirement: Invariant checks must be performed pairwise.
	IR Application Protocol Requirement: Application protocols must be able to change consensus operation results.
	IR Performance Principle: Application protocols should not expect operations to execute in the same order.
	IR Performance Principle: Application protocols should use cheaper inconsistent operations whenever possible rather than consensus operations.

	TAPIR
	Overview
	Protocol
	Correctness

	TAPIR Extensions
	Read-only Transactions
	Serializability
	Synchronous Log Writes
	Retry Timestamp Selection
	Tolerating Very High Skew

	Evaluation
	Experimental Setup
	Single Datacenter Experiments
	Wide-Area Latency
	Abort and Retry Rates
	Comparison with Weakly Consistent Systems

	Related Work
	Replication
	Distributed Transactions

	Summary

	Conclusion
	Looking Forward: The Path to Adoption
	Concluding Remarks

	Bibliography
	Open-source Code
	TLA+ Specification
	Inconsistent Replication Specification
	TAPIR Specification

